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Preface to Second Edition

When I began writing Science Without Numbers in the winter of /,
I did not intend to write a book, but a long article; but it grew until it
reached a pointwhere publication as a normal journal article did not seem
feasible. And the final product didn’t really seem like a book (which is
why I called it a monograph, a term I never used before or since): I gave
only a cursorymotivation for a certain project, that of presenting physical
theories in a certain (“nominalistic”) format, and spent the rest of the
time trying to overcome skepticism about the feasibility of the project by
giving a detailed sketch of how it might be accomplished for a particular
non-trivial physical theory.F A “real book” would have required a more
detailed philosophical discussion of the motivations for the project, but
I wasn’t ready to give that at the time of publication of the monograph.
I did attempt more philosophical justification over the ensuing decade or
so, in a number of articles, and in the Introduction to a volume (Field
/) that contained some of these articles. (I also devoted some
attention to an obvious lacuna of the book, the issue of whether the
nominalistic position of the book could accommodate metalogic.) By
some time in the early s, though, my interests within the philosophy
of mathematics had shifted a bit,F in part because of increasing doubts
about the Quinean framework that SWN presupposed. In particular,
I became increasingly doubtful of the following two suppositions:

• that the question of what exists has a univocal and non-conventional
content;

• that the right way to answer this question is to look at the existential
quantifications of ourmost fundamental theories; it is “doublethink”
to employ a fundamental theory and not literally believe its posits if
there is no serious prospect of showing how those posits could be
eliminated.

F “Defense” in the sub-title was intended literally: I was defending it against an attack,
not going on the offense.

F See for instance my , a, and b.



OUP CORRECTED PROOF – FINAL, //, SPi
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I still regard myself as anti-platonist in a broad sense, and still regard the
work in SWN as relevant to supporting the credentials of anti-platonism;
but I no longer want to rest my anti-platonism on the claim that the
program of SWN can be completely carried out.

‘Platonism’ can mean a number of things. In the book I took it to
be primarily a thesis about what exists: in particular, I took the exis-
tence of mathematical entities to suffice for “platonism”. “Nominalism”
is the denial of platonism in this sense. But another interpretation of
‘platonism’ is that what distinguishes a good mathematical theory from
a bad one is how accurately it describes mathematical reality. Slightly
more precisely, the view (said to be “typical of extreme platonism” in
Chapter  of the book) is that higher mathematics is objective in the
way that the sciences are: not only is it objective what’s a good proof, it’s
also objective what’s a correct axiom, so that e.g. there’s an objectively
correct answer to the size of the continuum even though this is unset-
tled by current axioms. But platonism in this sense can go with anti-
platonism in the “ontological” sense: witness the Putnam-Hellman idea
(Putnam ;Hellman ) thatmathematical questions are thoroughly
objective but to be understood modally. Conversely, ontological platon-
ism needn’t require platonism in the “objectivity” sense: witness Mark
Balaguer’s “plenitudinous platonism” (Balaguer ), or the view that
Putnam seems to advocate in the early section of Putnam , or views
on which the existence of mathematical entities and the laws they obey is
a matter of convention.

There is considerable plausibility in the idea that the arithmetic of nat-
ural numbers is objective in the sense I’ve described, a fact that I take
to be explainable by the close connection between it and the logic of
cardinality-quantifiers. I think this is consonant with the viewpoint of
Science Without Numbers, though the book ought to have emphasized it
more.The book did, as noted, come out against this sort of objectivity for
other parts of mathematics that don’t seem so intimately related to logic;
and in this I believe it was correct.

I now regard this objectivity issue asmore important than the existence
issue;F indeed, I’m not entirely sure that the question of what exists has a
univocal and non-conventional content, though I’ve never been entirely

F “ ‘Ontology’, I spoke the word, as if a wedding vow. Ah, but I was so much older then,
I’m younger than that now.” (Bob Dylan, approximately.)
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satisfied by attempts like Carnap’s () to make sense of the view that
it doesn’t. But whatever one thinks of the existence issue, I think that
the program of SWN bears on the objectivity issue (as it arises for parts
of mathematics that go beyond the arithmetic of natural numbers), and
tends to support the anti-platonist position on it. Moreover, if one does
take the existence issue seriously, one can take SWN as bearing on it with-
out buying into the Quinean view presupposed in the book, according to
which existence questions are to be settled by reading the answers directly
from our most fundamental theories. More on these matters later.

There were, actually, two main motivations for the project of SWN.
One concerned the platonism issues, most explicitly, the ontological

one: the project was to rid us of the need to literally believe in mathemat-
ical entities (not just numbers). Normal (“platonistic”) formulations of
physical theories contain reference to all sorts of mathematical entities;
whereas the “nominalistic” reformulations of theories that I proposed
contained no reference to mathematical entities of any kind. The idea
was that until you present a physical theory nominalistically, it looks as
if literal belief in the theory requires literal belief in mathematical enti-
ties; but the possibility of nominalistic formulations shows this not to be
the case. The view was that mathematical theories are essentially useful
calculation devices. In the context of a given nominalistic theory, some
consistentmathematical theoriesmay bemore useful for calculation than
others, but this doesn’t make them better in any context-independent
or non-utilitarian sense. (The arithmetic of natural numbers is a partial
exception since its most characteristic use is for dealing with cardinality
quantification, a role that it has independently of any particular empirical
theory.)

SWN is often described as advocating an error theory aboutmathemat-
ics, but I think that this description is highly misleading. The book does
assert thatmathematical theories aren’t literally true, if taken at face value;
but to say that this is an error theory suggests that most ordinary people,
or mathematicians, or physicists who use mathematics in their theories,
falsely believe the theories true in this sense. I am skeptical that ordinary
people or mathematicians or physicists typically have any stable attitude
toward that philosophical question. The only error I saw was on the part
of platonist philosophers (e.g. my most explicit target, Quine, who often
said thatmathematical objects are real in just theway that physical objects
are—see for instance Quine ).
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John Burgess (; also Burgess and Rosen ) likes to distinguish
between “revolutionary” and “hermeneutic” nominalists, the former
trying to correct what they see as widespread error and the latter
purporting to elucidate what ordinary people and mathematicians and
physicists meant all along. In my view, this is a false dichotomy. I cer-
tainly didn’t think that the account I was providing was “hermeneutic”,
but it wasn’t “revolutionary” either: I took what I was doing, rather, as
providing an account that explains why ordinary mathematical practice
is perfectly fine, and doesn’t require a platonist ontology. (The claim that
my account accepts all of “ordinary mathematical practice” would have
to be qualified if one construed ordinary practice as taking seriously
questions like “What is the real cardinality of the continuum?”. But of
course the invention of new axioms and the investigation of their impli-
cations for the cardinality of the continuum is a part of mathematical
practice that comes out perfectly fine on my account; it’s only the ques-
tion of which such competing axioms are “really true” that my account
rejects.)

The other motivation for SWN was based on a feeling that though
formulating an empirical theory using a high-powered mathematical
apparatus can in many ways be illuminating (especially when it comes
to comparing that theory with others), it can sometimes make it hard
to see what is really going on in the theory. Formulating physical the-
ories without the high-powered mathematical apparatus, and in what
I called an “intrinsic” manner, was intended to illuminate those theories;
and in combination with representation theorems, to give an account
of the application of mathematics that would be appealing even to the
platonist.The demands for a nominalistic formulation and for an “intrin-
sic” one aren’t the same: a formulation of the theory of gravitation that
made reference to a numerical inscription of . × − to represent
the gravitational constant in m/kg−/s− might count as nominalistic,
but would seem far less “intrinsic” than some formulations that aren’t
fully nominalistic. This second motivation for my program started out
as about as important to me as the first, but I never managed to make
it or the idea of intrinsic explanation very precise, and the philosophical
justification that I embarked on in the ensuing decadewas devoted almost
exclusively to the first motivation. (A partial exception is the discussion
of the distinction between “heavy duty platonism”, “moderate platonism”,
and “very moderate platonism” in Field b.)
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Besides containing only cursory philosophical discussion, SWN was
incomplete as even a sketch of how to avoid literally believing in math-
ematical entities. While it suggested a method of formulating (certain
kinds of) fundamental physical theories in a way free of reference to
mathematical entities, it said nothing about the use of mathematical enti-
ties in other areas, in particular in using metalogic to facilitate logical
reasoning. What the nominalist should say about metalogic is a matter
I turned to in the next decade or so, in particular in Field , ,
and . And that work is indirectly relevant to the case of fundamen-
tal physical theories. For as David Malament (: –) noted in an
excellent critical review of SWN, much discussion of such theories con-
cerns the existence of models with certain features, or (as in the case of
determinism) whether all models with certain features have certain other
features, and so on: in short, it concerns claims about what is consistent
with the theory, or what follows from it given certain assumptions. I
certainly think such questions are sensible; my view of them is that the
model-theoretic formulations are “abstract counterparts” of formulations
in terms of logical possibility, which I argued to be intelligible indepen-
dent ofmathematical entities (and to be a clearer andmore austere notion
than “metaphysical possibility”). SWN also said nothing about the use of
mathematics in sciences other than fundamental physics, e.g. economics
or psychology. My view was that these theories are heavily idealized any-
way, so not candidates for literal belief, so that if mathematical entities
were indispensable in them it would be of no ontological significance.
Still, I thought that even for idealized theories there is strong motivation
for finding an “intrinsic” formulation over an “extrinsic” one (e.g. in
Bayesian psychology, using relations of comparative credence rather than
numerical credence functions); while I did not in any way contribute to
that program, I had an interest in it.

The book dealt only with Newtonian gravitation theory, but it was per-
fectly clear that the basic ideas extend to other field theories in flat space-
time, such as classical electrodynamics (viewed special-relativistically).
Anumber of people have suggested that therewould be a problem extend-
ing it to general relativity. This surprised me: the methods that I used
to handle quantities were clearly modeled after the treatment of co- and
contra-variant tensors in differential geometry, and in the footnote at the
end ofChapter , SectionE I outlined away inwhich one could apparently
carry themover to curved space-times with an affine connection (i.e. with
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a notion of geodesic), or at least with a metric. As I said there, there are
details that would need to be worked out (I give a slightly more complete
sketch at the end of this Preface), and maybe there is a problem, but to
my knowledge, none of the people who have expressed skepticism have
given any hints as to where such problems might lie.

There do seem to be problems extending to certain other kinds of
physical theory. In his aforementioned review,DavidMalament raised the
problem of theories formulated in terms of configuration space or phase
space: Lagrangian and Hamiltonian formulations of classical mechanics,
Gibbs-style statistical mechanics, and quantum theory.F My initial
reaction to the examples of Lagrangian and Hamiltonian formulations
was that these formulations are mathematically convenient and have
heuristic value but can be thought of as instrumental. Perhaps one could
say something like this of statistical mechanics too, without giving up the
idea that, for truly basic theories, everything needed in the formulation
of the theory must genuinely represent; though this doesn’t strike me as
entirely comfortable. But in the case of (even non-relativistic) quantum
theory the problem seems very hard to escape: while there is presumably
little difficulty in describing the wave function “intrinsically” in terms of
predicates of comparative amplitude and comparative phase-difference,F

these would be predicates on configuration space (which is naturally
viewed as the space of possible configurations of particles or possible deco-
rations of space), or rather, on a space that adds to configuration space
an extra dimension for time. There are ad hoc tricks that might allow
recasting this in terms of predicates on ordinary space-time, but I don’t
know any that clearly work, and they would seem bound to make the
description far more complicated.F

F A fuller discussion of the problem, with special reference to classical statistical
mechanics, is in Meyer .

F Cian Dorr has pointed out to me that phase differences in quantum mechanics aren’t
invariant underGalilean transformations; as a result, the phase-difference comparison pred-
icates need two extra places, for non-simultaneous points representing a state of motion.

F Some of the discussion in the literature of the problem of carrying out the program of
nominalization for quantum mechanics suggests that the problem is even worse, on the
grounds that we would need to have a nominalistic analog of the algebra of Hermitian
operators on Hilbert space. This is, at the very least, contentious: for instance, it doesn’t
arise on the view that “the operator observables of quantum mechanics are [merely] book-
keeping devices for effective wave function statistics” (Dürr and Teufel : ), a view
which I find compelling independent of issues about nominalism. But even if the problem
isn’t worse, it is bad enough!
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Independent of a commitment to phase space or configuration space,
and indeed independent of issues of nominalism in general, there
are other features of both classical statistical mechanics and quantum
mechanics that suggest a partially instrumentalist treatment: I have in
mind especially the notion of chance, whose role as simultaneously
describing reality and directing our degrees of belief raises many philo-
sophical perplexities.

These are among the pressures that eventually led me away from the
strictQuinean standard that one’s ontological commitments are to be read
offone’s views about the best ultimate theory, and toward themore relaxed
ontological attitude to be suggested here.

I should mention that a number of people have made technical contri-
butions to the positive program,most notably FrankArntzenius andCian
Dorr in chapter  of Arntzenius . (Among other things, they sketch
an approach to general relativity that doesn’t depend on the differential
manifold having an affine connection, and so is presumably generalizable
to other space-time theories in a way that my approach isn’t; they also
sketch an approach to fiber-bundle theories. In addition, they provide a
good discussion of the philosophical significance of the program.) Brent
Mundy has also contributed ( and elsewhere); his program allows
quantification over physical properties, which I avoided, but I did say in
Chapter  that quantification over physical properties would be “at least
arguably nominalistic”. JohnBurgess’s  also deservesmention, though
the philosophical concerns behind it are rather different from mine: not
only was he thoroughly opposed to nominalism, he also didn’t share the
(admittedly somewhat vague) desire to formulate laws “intrinsically”.This
is illustrated, for instance, by his heavy use of coding devices, and by
his willingness to “quantify over arbitrary choices” of coordinate systems
rather than avoiding the use of coordinate systems in the first place.F

(His claim in Burgess  that space-time is every bit as dispensable as
numbers depends on this.)

F Likeme, Burgess uses standard work in geometry andmeasurement theory to present
the geometry and the “spaces” of physical quantities, and this is all as “intrinsic” in his case
as in mine. He uses the coding devices to define the mathematics within the physics. My
reservation about his approach is that when it comes to formulating the laws, he simply
uses the standard mathematized formulations, understanding the mathematics as defined
in this way; the formulations of the laws thus inherit the arbitrary coding built into his
geometric definition of the mathematics. Similarly, the mathematized formulations depend
on arbitrary choices, even if it is then shown that the choices don’t matter.
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SWN generated quite a lot of critical discussion. In part to avoid
obviating any of this (but mainly because I’m far too lazy), I’m repub-
lishing the book without any substantive changes: I’ve merely corrected
typographical errors and minor slips, and made a few other changes to
improve clarity. For instance, I’ve broken up some overlong sentences
and paragraphs, and improved the formatting for added readability; and
I’ve switched from endnotes to footnotes, and put the references into a
separate bibliography. Also I’ve done a bit of rewriting in a couple of
proofs in Chapter  to make them easier to follow; and I’ve added two
clarificatory footnotes, which I’ve marked as new to this edition. There
are two slightly less minor slips in Chapter  concerning the definition
of conservativeness (one in a footnote and the other in the Appendix)
that I’ve treated specially: I’ve corrected them, but also noted the original
wording. (I don’t think anyone could have seriously been misled as to
what was intended in either case, but I do know of one published discus-
sion that rests on the originalwording of the footnote, and it’s possible that
this is also so for the claim in the Appendix.) Similarly in Chapter , in
formulating the first order nominalistic theory I omitted a needed axiom;
I have added it, with a note on the addition, and done some rewording to
accommodate its inclusion.

I have also decided against explicitly commenting in this preface on
the critical discussions of the book, except in passing: it would be hard
for me to do a good job after so many years away from these issues, and
I fear that if I got in I could never get out.

But I will make a few general remarks about ways in whichmy thinking
has evolved since I wrote the book. It should go without saying that my
thoughts have doubtless been influenced by the literature and by com-
ments I have heard over the years. I’m sure that were I to try to cite those
who have influenced me I would come up with only a tiny proportion of
those who belong on the list, so I will not try.

.. Arithmetic and Cardinality Quantifiers
One of the parts of the book I’m least satisfied with is the second chapter,
on the arithmetic of the natural numbers. The view allowed us to regard
sentences of form

There are exactly  Fs
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as literally true, since they could be paraphrased in terms of first-order
logic with identity, quantifying over nothing but Fs (and in particular, not
quantifying over numbers). But it did not allow us to regard sentences of
form

There is a prime number of Fs

as literally true, because it could not be so paraphrased.
I now think the right response to this is that ‘There is a prime number

of ’ is a perfectly respectable quantifier in its own right. In the final chapter
I contemplated adding some other quantifiers as primitive, e.g. the binary
quantifier

There are fewer Fs than Gs.

But I now think it clear that a satisfactory theory must systematically add
the means for defining a vast array of such quantifiers. Like Hodes ,
I’m inclined to the following combination of views:

() Logic shouldn’t postulate numbers.
() Logic should contain a rich theory of cardinality quantifiers—

much richer than available in first-order logic.
() The primary point of the arithmetic of natural numbers is to

encode these cardinality quantifiers, or at least some of them, and
to encode the logical relations among them.

Arithmetic gives us a simple means for formulating the logic of such
quantifiers; but at least when taken at face value, it does so by means
of a fiction, or at least in a way that goes beyond the bounds of logic.
The underlying idea is that because of the obvious ties between natural
numbers and numerical quantifiers, the arithmetic of natural numbers is
much closer to logic than other parts of mathematics are.

In carrying out this idea, it would be nice to formulate the logic of such
cardinality quantifiers directly, without going beyond the bounds of logic.
Exactly how this ought to go, I’m not sure. (I don’t much like Hodes’ way
of doing it, which involves impredicative higher-order logic; I don’t think
the impredicativity sits well with his insistence that the “concepts” that
the second order quantifiers range over are in some non-mathematical
sense “predicative entities”.F) A first question is how vast an array of

F If properties are “predicative entities” in Hodes’ loose sense of being somehow like
predicates, then the relation of instantiating or falling under should be “predicative” in a
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quantifiers one wants to come out of it. I’d be inclined to want, at the
very least, for each k ≥  and each primitive recursive k-place predicate
� , a k-ary quantifier Q� , where (Q�x)[F(x) . . . Fk(x)]means intuitively
that �(ηxF(x), . . . , ηxFk(x)) (where ηxFi(x) is the number of x such
that Fi(x)).F And one might well think that the scope should include
more than the primitive recursive. But whatever the decision on this, a
second question is how best to formulate the theory so that it develops
these quantifiers systematically from a small definitional base, without
looking like it’s relying on an ontology of numbers (or of anything else).
This program strikes me as well worth pursuing.F

One option, which seems more appealing to me now than it would
have when I wrote SWN, is to partially mimic Hodes, but with some
sort of predicative higher-order logic. (That’s in a somewhat loose sense
of ‘predicative’ that includes non-stratified approaches, and in particular
includes the sort of nonclassical non-stratified approach to properties
mentioned in note F. These latter approaches don’t actually restrict
property-comprehension, but they are broadly predicative in that they

corresponding sense of being like satisfaction. And in that case, whatever precautions you
think are needed to avoid semantic paradoxes are needed for properties too. And on almost
every view of the semantic paradoxes, this gives rise to something like predicativity in the
mathematical sense. (The most familiar classical view of the semantic paradoxes is Tarski’s,
according to which you have to stratify linguistic predicates; this corresponds almost exactly
to the original technical notion of predicativity. Variant solutions tend to avoid the strati-
fication, but something of the flavor of predicativity remains: e.g. on the property analog
of the account of satisfaction in Kripke  or its extension in Field , while there are
no predicativity restrictions on comprehension, still the law of excluded middle may fail for
certain properties that are defined only impredicatively.)

F As stated, the specification doesn’t handle the case where for one or more of the
i there are infinitely many Fi . What we really need to do is first extend the domain of
application of� from the natural numbers to the natural numbers plus a number “infinity”
(which does not differentiate among infinite cardinalities); the intuitive meaning above is
for the extended� . (The notion of primitive recursiveness could be extended to the natural
numbers plus infinity bymeans of the bijection taking infinity to  and each natural number
to its successor. This would have the consequence that the finiteness quantifier counts as
primitive recursive, which raises a question about how to understand the extended logic;
I’ll say a bit about this starting in the paragraph after next.)

F I believe that one commentator on SWN, I can’t remember who, suggested that
I interpret such cardinality quantifiers in terms of numeral-shaped regions of space-time.
I imagine that he or she was joking, but in case not: it is totally alien to the methodology of
SWN to invoke space-time regions except in the context of theories that have space-time as
their subject matter; and even there, it is totally alien to the methodology to use constructs
that are “extrinsic” in a sense hard to precisely define but of which the proposal here would
be a gross exemplar.
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don’t generally guarantee classical logic for impredicative properties.)
Such a broadly predicativist approach wouldn’t yield the logicist inter-
pretation of arithmetic that Hodes wants (it wouldn’t yield a translation
of arithmetic language in which you can prove mathematical induction),
but it would suffice for defining a vast array of numerical quantifiers and
proving many properties of them.

But it’s also worth exploring the possibility of developing a theory that
gives you a large array of cardinality quantifiers without invoking even
predicative higher-order quantification, by using some sort of inductive
procedure for generating new cardinality quantifiers from some basic
ones. (This would probably involve the use of schematic variables in the
quantifier subscripts.)There are a number of prima facie possible ways to
proceed here; I don’t know whether any of them would ultimately yield a
satisfactory logic.

The final chapter actually did make a suggestion in the direction of
extending logic to allow for more cardinality quantification: it suggested
the addition of a binary quantifer ‘fewer than’ (interpreted in such away as
to not make distinctions among infinite cardinalities). To this I expressed
a somewhat ambivalent attitude. On the one hand I took it to be far more
attractive than the introduction of second-order devices (including the
“complete logic of Goodmanian sums”, i.e. impredicative second-order
mereology, on which more presently). On the other hand, after pointing
out that a ‘fewer than’ quantifier enables us to define a finiteness quantifier
Qfin (or ∃fin as I somewhat inappropriately called it), I pointed out that
if one defines logical consequence in the usual model-theoretic way this
will lead to a consequence relation that is neither compact nor recursively
enumerable, which may seem to go against the idea of logic. (The same
would be true if one invoked a finiteness predicate of regions and took it
to be, like ‘=’, a logical notion.)

The latter consideration led me to tentatively propose dispensing with
the finiteness quantifier, in the applications I put it to in Newtonian grav-
itation theory,F by a predicate of regions, taken as non-logical. But there
are better courses (that don’t involve avoiding the use of the notion in the

F As we’ll see in .(D), I could have avoided the use of the notion of finiteness there
by an independently motivated expansion of the primitives. But the burden of this section
is that even aside from the needs of the Newtonian theory, a treatment of cardinality quan-
tifiers is highly desirable.
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theory—see note F). One is to keep the quantifier and come up with
some kind of deductive system for it; exactly what that deductive system
should involve depends on what general framework for defining cardi-
nality quantifiers is best. But in any case, such a deductive system would
presumably involve some sort of induction schema, and an adequate
treatment of Qfin as logical requires the extensibility of the schemas as
the language expands (see subsection ...). A variant procedure would
be to use a predicate of regions (say a finiteness predicate) instead of the
special quantifier, and axiomatize it with an induction schema, but treat
the predicate as logical by understanding the schema to be extensible as
the language expands. Either way, we could regard conclusions obtained
by such a deductive system as valid, without commitment one way or
the other to the question of whether conclusions involving Qfin or the
finiteness predicate that can’t be established in this manner but which are
valid according to the most obvious model-theoretic account ought to be
given the honorific ‘valid’.

A smaller point about this chapter is that, contrary to what it suggests,
you can’t really make it all that much easier to assess nominalistic infer-
ences like the aardvaark inference simply by using arithmetic to code the
quantifiers: tomake the inferencesmanageable, you do need that, but you
need some metalogic as well. This is one of several points in the book
wherework I did later, on how a nominalist should understandmetalogic,
is relevant to giving the full picture. But this doesn’t affect the main point
I was trying tomake, which is that the use of arithmetic to code the quan-
tifiers is perfectly legitimate from the nominalist viewpoint, given the
conservativeness of impure number theory (to be discussed presently).

.. Mereology and Logic
The other way (besides the finiteness quantifier) that the middle chapters
of SWN go beyond first-order logic is in connection with mereology, and
I was far less happywith this. Indeed, I recognized thatmereology as I was
understanding it simply isn’t part of logic if we understand logic as topic-
neutral, formereology as I understood it deals with special entities, space-
time regions.F For that reason, it has no use except when space-time is

F There is an alternative attitude toward mereology, according to which any entities
can be “summed” in a way that needn’t have a spatial interpretation. I suppose that if one
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the subject matter. (There is some precedent for use of the term ‘logic’ in
connection with special subject matters—witness “temporal logic”—but
on the whole I think that the extended use is unfortunate.) But if mere-
ology is simply part of the theory of space-time structure, it doesn’t seem
legitimate to invoke a special and powerful consequence relation in con-
nection with it. While I’m sure that I was aware of this, I’m embarrassed
to say that the book doesn’t address it head on. The last half of Chapter 
does however express a preference for avoiding the special consequence
relation, andmaking do with first-order logic, or perhaps first-order logic
supplementedwith the logic of the cardinality quantifierQfin. But thiswas
left somewhat programmatic.

The last chapter does not sufficiently emphasize the difference between
going beyond first-order logic in connection with mereology and going
beyond it in connection with cardinality quantification. I’ve alreadymen-
tioned one point: cardinality quantification is topic-neutral, whereas
mereology (as I construe it) isn’t. But there’s a related point, which is
how we understand schemas. If a physical theory says something about
regions definable in the language of that theory, there is no obvious
reason why it needs to say the corresponding thing about regions not
definable in that language but definable in broader languages; because
of this, when one posits regions via a comprehension schema, there is
no reason to think that this involves an implicit commitment that when
the language expands, the same comprehension schema together with
the same assumptions about regions will be unrestrictedly valid. With
cardinality quantifiers, the situation seems quite different I think that our
understanding of finiteness does involve a commitment that the rules here
hold not just in the case of language as it is currently but to any expansion
of the language. (Certainly other logical schemas behave like this: we don’t
normally think that the deMorgan laws are perfectly good logical laws for
our current language but don’t automatically hold for expansions of the
language.)

accepted such a view, one could regard regions of space-time as atoms, and regard the “sum”
of two perhaps overlapping regions r and r as an entity distinct from the sum of any other
regions, and from the smallest region that includes all spatial parts of r and r. That would
yield far more expressive power, but it strikes me (and struck me then) as philosophically
unpalatable: it would just be monadic second-order logic (of a presumably impredicative
sort) by another name.
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I’ll say more about these issues after I’ve discussed why extensions of
first-order logic might seem needed, which is in connection with repre-
sentation theorems.

.. Representation Theorems
The reason I found it necessary (at least temporarily) to employ the “com-
plete logic of mereology” was for the Hilbert representation theorem that
I discussed in Chapters  and  and extended in the chapters that follow
it. And these later extensions of the representation theorem in this form
seem enough to satisfy a reasonable demand for “intrinsicness”, even if
the “complete logic” is thought of as depending on set theory. But of
course I wanted a formulation that was genuinely nominalistic, and for
that purpose any dependence on set theory was verboten.

However, as I mentioned in passing in Chapter , more general
representation theorems are available, where the representation isn’t nec-
essarily by the real numbers but by some real-closed field. Tarski 
gives a representation theorem for a purely geometric theory in which
there is quantification only over points; it allows representation by an
arbitrary real-closed field. If one extends the underlying geometry to
include regions, with a first-order axiomatization of them that doesn’t rely
on sets, then only rather special real-closed fields are representing fields.
(That’s because the comprehension schema for regions will guarantee the
existence of regions that are specified via impredicative quantification
over regions, and because Dedekind completeness (which can now be
given in a single axiom instead of a schema) will then guarantee that if
bounded these have closest bounds.) This more general sort of repre-
sentation theorem can be used for physics more generally; I’m not sure
that I was fully aware of this in the book (though perhaps there are hints
in Chapter ), but this was a major theme of a follow-up paper (Field
a). The extended representation theorem for physics given in that
paper says that for any model M of the nominalistic physical theory N,
there is a real-closed field FM , depending on M, whose “real numbers”
can represent distance and the various physical quantities. (The same
representing field is used for both.) Again only rather special real-closed
fields are representing fields, not only for the reason given above but
also because the physical vocabulary of the theory can be used to specify
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bounded sub-regions of lines, and the Dedekind completeness axiom for
regions then guarantees that these too have closest bounds. So FM will be
“close to the real numbers”. (If the quantifier Qfin is used in N, and the
model M is assumed to treat it standardly, then FM is Archimedean, so
can be taken to be a subfield of the reals.)

I think I ought to have used representation theorems of this more gen-
eral sort in the book. (Mundy  also advocates their use.) It wouldn’t
have changed a whole lot in the position advocated, but it would have
made the first-order option discussed in Chapter  more appealing. (Or
the “almost first-order” option also mentioned there, of using Qfin but
nothing beyond that.) Of course, as with any version of the first-order (or
“almost first-order”) option, it would mean that the proposed nominal-
ized physics doesn’t capture quite the full content of standard platonistic
physics. I doubt that the loss would be of much significance to physics:
work on subsystems of second-order arithmetic (see Simpson  for
an excellent survey) suggest that far less than the full content of even
Henkin second-order arithmetic plays a role in physics. (In the unlikely
event that some aspect of standard platonistic physics not captured in
the proposed nominalistic axiomatization proved important, we could
look for a richer nominalistic theory that did capture it: it’s not as if
this part of mathematics is in principle inapplicable.) It would be nice to
know just where themathematics used in the platonistic theories that one
gets from the representation theorems mentioned (the one without Qfin
and the one with it) fit with the hierarchy of subsystems of second-order
arithmetic, but that is better addressed by others. (The answer might well
be affected by the need, noted in .(A), to include a nominalistic analog
of integration theory in the nominalistic system.)

We could also avoid the use of representation theorems altogether.This
is what is proposed in Burgess  andBurgess andRosen : instead of
representation theorems, we develop a piece ofmathematics (a subsystem
of second-order number theory) within a very simple conservative exten-
sion of the synthetic theory, one obtained by adding certain equivalence
classes. (For instance, we identify real numbers with equivalence classes
of ratios of line-lengths.) I’m not sure that this is ultimately very different
from the approach of the previous paragraph, but it gives a different
emphasis in three respects. First is their de-emphasis of intrinsicness in
the formulation of laws, a matter I’ve already discussed. Second, their
approach encourages the view that we’re in a fairly literal sense defining
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the mathematics geometrically, and that once so defined we’re free to use
it in applications (say in the theory of credences); whereas part of my
picture was that if ratios of line-lengths aren’t “intrinsic to” credences we
shouldn’t use real numbers so defined for credences.Third, their approach
doesn’t emphasize that the mathematics that can’t be so defined, such as
higher set theory, can be legitimately employed in geometry and else-
where, by the conservativeness property that I now turn to.F

.. Conservativeness
One of the points on which the book was widely criticized, and to some
degree justifiedly, was the discussion of “conservativeness” in the opening
chapter. I stand by the basic idea, but there are some things I wish I had
done differently.

... The Basic Idea

The idea was to state a criterion of goodness for mathematical theo-
ries that doesn’t involve truth. In some ways conservativeness was to be
stronger than truth: it was intended to capture the idea that whether a
mathematical theory is good is independent of what the physical world
is like. It is often assumed that the way to capture this idea is to say that
mathematics is necessarily true, but my criterion of conservativeness was
to be “like necessary truth but without the truth”. An informal character-
ization, close to what I gave, would be this:

A mathematical theory S is conservative iff for any nominalistic
assertion A, and any body N of such assertions, A isn’t a consequence
of N + S unless A is a consequence of N alone.F

(“N + S” simply meant the union of N and S, considered as sets of theo-
rems. In subsection .. I’ll look at the charge that this gives too anemic
a reading of what it is to “add” a mathematical theory to a nominalistic
one.) The claim was that good mathematical theories are conservative in
this sense.

F As we’ll see, its use in empirical comprehension principles goes beyond
conservativeness.

F Both this definition and the variant in the book are in platonistic terms: I left the task
of “nominalizing” metalogic to later work.
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An equivalent formulation invokes the notion of consistency according
to which a theory is consistent iff not everything is a consequence of it (or
if no contradiction is a consequence of it): then a conservative theory is
one that is consistent with every consistent nominalistic theory, i.e.

Amathematical theory S is conservative iff for any consistent bodyN of
nominalistic assertions, N + S is also consistent.

There is a boring issue to be addressed about the reading of ‘nominalis-
tic assertion’. In the book I counted claims like ‘Everything has mass’ and
‘There are fewer than 


things’ as nominalistic, on the grounds that

they don’t imply the existence of mathematical objects as normally con-
ceived. But not only don’t they imply the existence of mathematical enti-
ties, they prettymuch rule them out:more precisely, the second of the two
claims is inconsistent with the existence claims of standard mathematics,
and the first is inconsistent with the usual conception of mathematical
entities and hence with what would seem to be a harmless supplementa-
tion of standard mathematics. And because of this, conservativeness as
formulated here (with N + S taken as simply the union of N and S) would
come out trivially false for standard mathematical S, on that understand-
ing of ‘nominalistic assertion’. There are two ways to avoid the problem.
One way keeps this formulation of conservativeness but takes ‘nominal-
istic assertion’ more narrowly: it requires a nominalistic assertion to be
neutral to the existence of sets or numbers or other sorts of mathematical
entities, i.e. they not only can’t imply their existence but also cannot rule
them out. The obvious way to achieve this is to suppose that, in a nomi-
nalistic assertion, all quantifiers must be restricted to non-mathematical
objects; and I’ve used that understanding in various papers subsequent
to the book. The second way to avoid the problem, the one adopted in
the book, keeps the broader understanding of ‘nominalistic assertion’, but
replaces the formulation of conservativeness with something more com-
plicated that makes appropriate quantifier restrictions to achieve neutral-
ity (and handles a complication about an existence assumption built into
standard logic). There is nothing of any philosophical significance in the
divergence between these approaches, they’re simply two different ways
of doing the same thing. (They give rise to a further minor difference in
the technical formulation of conservativeness, to be addressed later.)

Of more importance is what is meant by ‘mathematical theory’. Obvi-
ously I didn’t mean ‘theory that uses mathematics (or mathematical
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entities) in its formulation’, for standard formulations of physical the-
ory do that, and they have nominalistic consequences on their own and
hence certainly aren’t conservative. Rather, I meant ‘theory that should
be regarded as part of mathematics’. This includes impure mathematical
theories as well as pure ones.

A pure mathematical theory doesn’t speak at all about non-
mathematical entities, and its only non-logical vocabulary is special to
mathematics; such theories (for which conservativeness reduces to con-
sistency) are of interest to applications only as parts of larger mathemati-
cal theories. The larger mathematical theories are impure, like impure set
theory or impure number theory; and it is these for which conservative-
ness strengthens consistency.

• I take impure set theory to

() Not only posit “pure” sets but conditionally posit sets of physical
objects: the theory says that for any physical objects there may
be, there are lots of sets that have them as members—including
a set of all of them. (Also of course, sets of sets of physical objects,
sets that include both pure sets and physical objects, and much
more.)

() Allow the vocabulary for physical objects to be used in specifying
what sets there are. For instance, in impure set theory based on a
language that includes ‘star’, we may speak of the set of all stars.
(Without allowing words such as ‘star’ to appear in the compre-
hension principle, this is a set which wouldn’t be definable even
with parameters, if there are infinitely many stars.)

Despite these features, impure set theory is part of mathematics: a pla-
tonist would regard it as true by mathematical necessity. A somewhat
similar impure theory (though simpler because it doesn’t posit objects
not in the corresponding pure theory) is impure number theory.

• Impure number theory includes an operator ‘the number of ’ which
can apply to formulas that include non-mathematical vocabulary, so
that we can say such things as “For any star x, if there are exactly two
planets of x then the number of planets of x is prime”.

I didn’t specifically talk about impure number theory in the book—there
was no real need to, since it is a consequence of impure set theory and
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so the latter can serve all the purposes that the former can—but it is
another example of the kind of impure theory I had in mind. Theories
like these, even though impure, are the sort of things that a platonist
would regard as true by mathematical necessity; and they are the kind
of theory I held to be conservative. By contrast, a claim like ‘Every object
is located in Euclidean -space’ isn’t part of mathematics but of physics:
no platonist would regard it as true of mathematical necessity, and the
conservativeness condition quite properly rules it as not part of what we
should regard as good mathematics.F

There seems to be some confusion in the literature between on the one
handmy conservativeness claims (that goodmathematics is conservative,
and that standard impure number theory and impure set theory are good
in this sense), which I expected would be uncontroversial once pointed
out, and on the other hand certain claims related to the dispensability of
mathematical entities, which I took as far less obvious.These less obvious
claims concern the existence of suitable nominalistic theories. Once one
has an interesting nominalistic theory T, the conservativeness of impure
set theory tells us that the result of adding impure set theory to it adds no
new nominalistic consequences. So if it can also be shown that the result
of adding impure set theory to it has pretty much the same nominalistic
consequences as a platonistic theory T, then conservativeness entails that
T and T have pretty much the same nominalistic consequences, which
is what one needs for the dispensabilty of mathematical entities for T.
But the conservativeness claim does nothing to show the existence of
the interesting nominalistic theories.F My apologies if I’m belaboring
the obvious, but even as astute a philosopher of mathematics as Michael
Dummett seems to have been confused by the point. In Dummett 
he writes,

Field envisages the justification of his conservative extension thesis as being
accomplished only piecemeal. For each mathematical theory, and each theory to

F A more “mathematical-looking” theory that is ruled out of good mathematics by the
conservativeness criterion is the modification of impure set theory obtained by replacing
the axiom of infinity by its negation (keeping the replacement schema and the existence
of a set of all non-sets): if it includes the axiom of choice it rules out all theories in which
the physical world is infinite, and even without choice it rules out most, e.g. those with a
definable infinite linear order relation.

F Of course, each platonistic theory T conservatively extends the “theory” consisting
of the Craigian transcription of the set of nominalistic consequences of T; but I assume that
everyone agrees that such Craigian theories aren’t interesting.
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which it is to be applied, the demonstration is to be carried out specifically for
those two theories; no presumption is created by the successful execution of the
programme for one case that it will work in others. (p. )

This is incorrect: I gave reasons (indeed, platonistic proofs of a sort) for
thinking that impure set theory is generally conservative, from which it
follows that weaker theories are too. For instance, consider the theory
obtained by taking the theory of real numbers and adding to it just enough
impure set theory to speak of functions from physical objects to the real
numbers, so that we can apply the real numbers to the physical objects.
This is guaranteed to apply conservatively to any nominalistic theory
whatsoever, as a result of the fact that impure set theory does and that this
theory is a subtheory of that. Dummett does have a point here, but it isn’t
about conservativeness: rather, it is that finding an interesting nominal-
ization of one physical theory by nomeans guarantees that one can find it
for another. (Even so modified, his ‘no presumption’ claim is a bit strong:
to the extent that the theories are similar in mathematical structure, I’d
think that nominalization of one is grounds for expecting that we could
nominalize the other. But it is right that there is no guarantee.)F

I’ve been spelling out the intuitive idea of conservativeness; but there
are some issues that need to be clarified. I will discuss the main issues
in the next subsection. But first I should make more explicit one other
technicality in the definition of ‘nominalistic assertion’, especially since
the definition as given in footnote  of the original edition included a slip.
If wewant to use the simple formulation of conservativeness, we need that
a nominalistic assertion (in a language with no singular terms other than
variables, to make things simple) is one:

F It’s possible that rather than confusing conservativeness with nominalizability,
Dummett was misunderstanding how conservativeness was supposed to work. Perhaps
he thought that the impure mathematical theory containing real numbers that we add to
certain nominalistic theories didn’t consist in simply the theory of real numbers plus a
theory of functions from objects to numbers that follows from impure set theory, but instead
was a theory with substantial physical presuppositions that might be met for some physical
theories but not for others. But I’m not sure how to fill out such an alternative interpretation
in detail, and I think it should have been clear from the book that whatever substantial
physical presuppositions are needed for an application of the real numbers need to be built
into the nominalistic theory rather than be taken as part of the mathematics. So again,
whatever objection there might be in the vicinity of Dummett’s remarks, it is not to the
conservativeness claim I was defending.
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(A) in which all quantifiers are restricted to non-mathematical
objects, and
(B) which employs no specificallymathematical vocabulary. (Logical
vocabulary, including ‘=’, is of course allowed; so is a special term
‘mathematical’, used to make the restriction to non-mathematical
objects explicit.)

[(B) is important: without it, the claim (∗) “there are non-mathematical
x and y such that x ∈ y” would count as “nominalistic”. But impure set
theory says that anything that has a member is a set, and it was essen-
tial to build into impure set theory that sets are mathematical (in order
that the quantifier restrictions to non-mathematical objects serve their
purpose). So (∗) is inconsistent with impure set theory, and that would
violate conservativeness if (∗) were counted nominalistic. This is for the
simple formulation of conservativeness. For the one in the book, (A) can
be dropped, since the restriction of variables is done by other means;
but (B) is still needed, and indeed must be strengthened to preclude
“mathematical” from appearing in nominalistic statements, or at least to
include restrictions on the kind of occurrences it can have in them.F]
Unfortunately in that footnote  I slipped in the formulation of (B), and
said that to be nominalistic, a statement must not employ any non-logical
vocabulary that appears in our mathematical theories.This made no sense
in the context, where I’d stressed that all non-mathematical vocabulary
is part of the impure mathematical theories of interest; and none of the
subsequent discussion depended on it. I’m sure no one was misled, but
I’ve corrected it in the current edition, with a statement about the change
to the original text.

F Thanks toMarkoMalink for the observation that it must be strengthened in this way.
Illustration: In Principle C of Chapter , take N to be the rather trivial theory ∀x(x = x), and
A to be ‘Everything is non-mathematical’; A doesn’t follow from N, but A∗ is vacuous. (The
last sentence of the derivation of Principle C from Principle C′ in the first paragraph of note
 of the text relied on the assumption that nominalistic claims don’t include ‘mathematical’.)
The blanket refusal to let any sentence containing ‘mathematical’ count as nominalistic is
slightly counterintuitive, in that no statement of formA∗ whereA contains quantifierswould
count as nominalistic on this criterion. Perhaps it would be more natural to disallow the use
of ‘mathematical’ in nominalistic claims except in the contexts ‘for all non-mathematical
x . . .’ and ‘for some non-mathematical x . . .’. Or we could avoid the whole issue by using the
simpler sort of formulation of conservativeness given above.)
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... Consequence, Proof, and ω-Conservativeness

In the Preliminary Remarks and the opening chapter I tacitly assumed
that we were working in first-order logic. I wrote these parts of the book
early on, but as the book developed I seriously contemplated expanding
the logic of the theory.

One expansion was to something akin to “full” monadic second-
order logic, since this was used in the Hilbert representation theorem.
I rejected ordinary second-order logic on the grounds that the second-
order variables are required to range over sets or Fregean concepts or
some such things. (This understanding of second-order variables has
recently been challenged—see Rayo and Yablo —though inmy opin-
ion the worries about impredicativity that I voiced earlier arise as well
for the Rayo-Yablo view, and predicative second-order logic wouldn’t
suffice for the representation theorem.) In a desperate attempt to keep
the Hilbert representation theorem nonetheless, I suggested a less gen-
eral version of monadic second-order logic that I called “the complete
logic of mereology” [or “the complete logic of Goodmanian sums”, which
was supposed to make it sound more nominalistically respectable]. The
idea was to suppose, as a matter of logic(!), that the regions of space-
time form a complete atomic Boolean algebra except for the absence
of an empty region. Then quantifying over regions is a surrogate for
quantifying over sets of atoms of the algebra, i.e. over sets of space-
time points. This is less than one would get with monadic second-
order reasoning generally: since regions were taken as basic entities,
monadic second-order logic would have variables ranging over sets or
concepts of arbitrary regions, not just of the atomic regions that are
points. But I didn’t need that added power for any representation theo-
rems (or anything else), so I thought the “complete logic of mereology”
would do.

But as I said in section ., the idea of a “logic” of mereology seems
misguided. I regret having considered it. I also still tend to resist the
more genuinely second-order option, especially in the impredicative and
indeed non-axiomatic form that would be required for Hilbert’s version
of the representation theorem.

The other expansion I contemplated, which played a far more limited
role thoughwhich Iwasmuch happier with, was to include the cardinality
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quantifier ‘fewer’ or ‘finitelymany’, conceived as logical.F Given second-
order logic, the cardinality quantifiers are definable (and given the “com-
plete logic of mereological sums” they are definable as applied to points
of space-time); nonetheless in Chapter  I considered the two expan-
sions independently, so as to allow for the option of using the cardinality
quantifiers without second-order logic or itsmereological analogue. (This
option was emphasized more emphatically in Field a.) As I’ve noted,
this would allow the use of representation theorems in which the repre-
senting field is guaranteed to be Archimedean.

As I said, the early parts of the book were written before I appreci-
ated the pressures toward going beyond first-order logic. (When those
pressures did become evident, instead of rewriting the early material as
I should have, I simply made a few inadequate remarks at the end of
Chapter  and in Chapter  about how what was said earlier ought to be
adjusted.) In a more-than-first-order setting, there is room to ask what is
meant by ‘consequence’ as it occurs in the definition of conservativeness.

If logic is taken to be thoroughly first order, there is no real issue about
the extension of the consequence relation: we all agree that first-order
consequence is syntactically characterizable. (At least, it is as long as we
put issues of achieving a nominalisticmetalogic aside, as I did in the book
and Iwill continue to dohere.)As long aswe’re happywith the purely first-
order extended representation theorem, there isn’t even a prima facie issue
about what ‘consequence’ means in the definition of conservativeness.

But what if we consider the cardinality quantifier ‘fewer’ or ‘finitely
many’, or second-order quantifiers, or mereology, as logical? In each case,
the obvious semantic definition of consequence (in terms of standard
models) gives a relation that is neither compact nor recursively enumer-
able; it would thus diverge from a syntactic definition in terms of proofs.
Of course as a nominalist I wasn’t going to define consequence either in
terms of models or in terms of proofs, but there was still the question

F I didn’t consider the option of adding such quantifiers as new syntactic operators
without considering them as logical: I assumed that if you didn’t want them as logical you
would dispense with them in favor of predicates. (Conversely, I didn’t consider the issue
of adding a predicate but treating it as logical, in the manner mentioned above in section
. and discussed further below.) In retrospect the issue of operators vs. predicates seems
inessential to the points at issue.
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of whether on my understanding it lines up in extension with (a) the
extension that it would have on a semantic construal were platonism true;
(b) the extension it would have on a syntactic construal were platonism
true; or (c) something else, presumably something in between. (Ormaybe
its extension is somewhat indeterminate.)

In note  of Chapter  I took a stand for its lining upwith the semantic
(and explained the apparent syntactic remarks in the opening chapter as
due to a temporary tacit assumption of first-order logic, where the two
coincide). But at least in the case of full second-order logic or the “logic” of
mereology, this stand makes much of the rhetoric in the opening chapter
quitemisleading.The reason is that, asmany people correctly complained
later (e.g. John Burgess and Stewart Shapiro), semantic conservativeness
simply amounts to truth in this second-order context. Indeed I now
think that we have no clear grasp of second-order consequence (or its
mereological analog) in the sense intended in the book, i.e. the semantic
consequence relation of “full” impredicative second-order logic; I think
the book takes this notion entirely too uncritically at a number of points.

On the other hand, the idea of a logic of cardinality quantifiers such as
Qfin seems much more appealing. For it too, the obvious semantic char-
acterization diverges from any syntactic one, and so the issue of how ‘con-
sequence’ is to be understood arises in this context as well. And it seems
to me that if we’re to regard this as a logical notion, we can’t suppose that
our grasp of the induction principle is adequately captured by the totality
of instances of the induction schema in any fixed first-order language.
The usual alternative to such a syntactic characterization is a semantic
characterization in terms of standard models. Of course, a nominalist
can’t literally embrace a model-theoretic characterization, but a nominal-
ist can’t literally embrace a proof-theoretic characterization either; again,
I want to put aside here the issue of how exactly a nominalist ought to
deal with metalogic. My claim is just that the semantic characterization is
a better platonist approximation to how we should think about the logic
of Qfin than is the syntactic characterization based on a fixed language.

If we do want to employ cardinality quantifiers in our nominalistic
physics and think they have a logic that can’t be syntactically character-
ized, to what extent would that undermine the general picture of the role
of mathematics I tried to paint in Chapter ?

I don’t think it undermines the main idea: conservativeness
in this sense (which to avoid any confusion might be called
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ω-conservativeness)F serves much of the function that necessary
truth was supposed to serve, but doesn’t imply truth. A mathematical
theory that (ω-)implied that the physical universe was finite, or that it
was infinite, or (ω-)implied any conclusion about the number of planets
or the fate of the Paris Commune even if that answer were true, would
be bad mathematics. But two mathematical theories that both met this
condition might disagree about many purely mathematical claims such
as the size of the continuum; short of positing an ambiguity they couldn’t
both be true, but on the ω-conservativeness criterion they could each
be good mathematics. (Of course, there might be reasons why in some
applications one was more useful; but which was the more useful might
vary from one application to the next.)

The lack of synthetic characterizability may however undermine some
of my rhetoric. For instance, in drawing the contrast between mathemat-
ics and physics I say that the conclusions we arrive at by applying mathe-
matics to nominalistic premises “are not genuinely new, they are already
derivable in a more long-winded fashion from the premises, without
recourse to mathematical entities”.This claim can be “saved” by replacing
“they are derivable from” by “they are ω-consequences of ”, but I admit
that this pulls at least some of their punch.F

As mentioned, conservativeness is a slight generalization of consis-
tency. Of course, if it’s ω-conservativeness that’s in question, this is con-
sistency in (essentially) ω-logic, and thus not explainable in terms of any
deductive system in a fixed language. I don’t think this would seriously
undermine the main point of Chapter . In the Appendix to that chapter
I offer a (rather obvious) model-theoretic argument for why a platonist
should believe that impure set theory (and hence any mathematics that

F Incidentally, though I only came to realize it much later, the idea of
ω-conservativeness is important in another context: in Kripke’s theory of truth. The
part of Kripke  based on the Kleene evaluation schemes argues in effect that any
theory adequate to basic syntax can be extended in an ω-conservative fashion to include
a truth predicate in which (i) “True(<p>)” is everywhere intersubstitutable with “p” in
non-intentional contexts, (ii) the usual composition rules hold, and (iii) ‘True’ is allowed in
mathematical inductions. It’s well known that the extension isn’t deductively conservative
(when the base theory is consistent and recursively enumerable): for the extended theory
can prove the consistency of the base theory, whereas the base theory can’t. So the focus on
ω-conservativeness in the book wasn’t really novel, though the use I put it to has a rather
different flavor from what we have in Kripke’s theory.

F Even in the fully first-order case, “long-windedness” isn’t really what’s at issue; rather,
the mathematical formulation is an aid to seeing what the consequences are.
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can be formalized in it) is conservative. It goes through as before, except
that we must start the construction from an ω-model of M of T; what
the construction then produces is an ω-model of ZFUV(T) + T∗. (Other
arguments in the Appendix are more dependent on the logic being fully
first order.)

... Logic and the Extensibility of Schemas

It is built into my explanation of impure mathematical theories that any
schemas that appear in such theories are to be interpreted as apply-
ing not just to instances containing only mathematical vocabulary and
quantifying only over mathematical entities, but to instances contain-
ing physical vocabulary and/or quantifying over physical entities as well.
(I don’t rule out that in special circumstances there might be reason to
introduce restricted schemas that impose limits on the vocabulary or
quantifier-ranges of the instances, but one doesn’t normally do so: the
comprehension schema of impure set theory and the induction schema
of impure number theory are supposed to apply to instances containing
physical vocabulary, and it would cripple the application of mathematics
to alter this.)

What about the reverse? Should schemas in empirical theories be
deemed to extend to instances containing mathematical vocabulary? In
the book I tacitly made a two-fold assumption about this.

The first half of the assumption was that, if the schemas appear in those
theories as part of the logic, then they should be deemed to extend to all
vocabulary including the mathematical. Logic, after all, is supposed to be
topic-neutral.

The second half of the assumption was that any schemas that appear in
physical theories that aren’t based on logical principles (or on mathemat-
ical principles, in the case of platonistic theories) should not be extended
to new vocabulary, without special justification for doing so.This seemed
natural since such extension of the schemas adds empirical content.There
could of course be special justification for extending the schemas. Most
obviously, there might be empirical evidence for the added empirical
content one gains from such an extension. Even without empirical evi-
dence, considerations of simplicity or naturalnessmight perhaps favor the
extension, though in the case of extension to mathematical vocabulary
these considerations are likely to look different to the platonist than to
the nominalist. (If one already has mathematical entities, then a theory
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that extends an empirical schema to instances that quantify over them or
that contain special vocabulary for them might seem somewhat simpler
or more natural than theories with a more restricted schema, though
without empirical support for the excess content this wouldn’t seem tome
terribly weighty; but if one doesn’t already have themathematical entities,
there is no such added simplicity, indeed there is added complexity in
introducing the mathematical apparatus to extend the schemas.) But the
view was that, without any such special justification, there is no reason
to extend the schemas that appear in non-logical and non-mathematical
theories.

To illustrate this two-fold assumption, and relate it to conservativeness:

() If one were to regard mereology as logic, or take N as a second-
order theory, then we should view the schematic letters in the
Dedekind-completeness schema or the comprehension schema for
regions as in effect second-order variables, and as such, indef-
initely extensible. In that case, if we add to N a set theory S
that postulates lots of sets, then we should understand “N+ S”
as expanding the schema to include such sets; this would lead to
things being provable in a deductive system for N+ S that aren’t
provable in N without the expanded schema. This is no violation
of conservativeness as I’ve explained it, because it depends on
the assumption of second-order mereology or second-order logic
more generally, where consequence exceeds provability. On this
conception, unless S is a mathematically bad set theory, e.g. an
inconsistent one, then N already implies whatever “N+ S” does
about the existence of regions; S merely serves to elucidate the
meaning of the second-order quantifier and hence elucidate what
were already consequences of N, in the non-axiomatizable sense of
consequence in question.

() On the other hand, ifN is taken as amerely first-order theory, I took
it that there was no reason to expand the Dedekind-completeness
schema when adding S to it: N is a theory about regions (i.e.
parts of space-time) alone, saying nothing about sets, and there
is no reason on this picture why sets are in any way relevant to
the notion of region. For instance, even if the mathematics pos-
tulates non-measurable sets of points, there is no obvious reason
why the physical theory must postulate regions corresponding to
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them. (For instance, there is no obvious reason to regard a Banach-
Tarski decomposition as physically meaningful.) So why should
adding a claim about sets have any bearing on the understanding
of the schema? (Of course if there were empirical support for the
excess content that the platonistic theorywith the extended schema
has over the nominalistic one, the situation would be somewhat
changed: the nominalist would want to try to attain this excess
content without the platonism. But as I emphasized in the book,
the excess content is quite recherché and currently has no empirical
support.)

() Similarly, if N is taken as an “almost first-order” theory with-
out second-order devices, but employing a quantifier Qfin viewed
as genuinely logical (or a finiteness predicate of regions, viewed as
a logical predicate like ‘=’), then the induction schema used to
axiomatize this quantifier (or predicate) should be taken as indef-
initely extensible, including to mathematical predicates when S is
added to it. In that case, in analogy to , the addition of S to the
theory will enable one to prove more from instances of the com-
pleteness schema that contain the quantifier (or predicate) than one
can prove without S; but this is no violation of conservativeness,
since it is merely elucidating what are already consequences of N.
But since on this view there are no logical devices that go beyond
first-order devices plus finiteness, there is no reason to expand the
completeness schema to set-theoretic instances, absent empirical
support for the expansion; in this respect the situation is as with .

In all three cases, “N+ S” is just the union of N and S; it’s just that N is
conceived differently in the three cases.

Could any of this sensibly be denied? I doubt that anyonewouldwant to
deny that schemas for notions viewed as logical are indefinitely extensible,
but I suppose that one might question the implicit assumption in  (and
the first part of ) that this extensibility goes all the way to instances that
quantify over fictional objects or predicates appropriate to them. And if
that assumption is wrong, then a nominalist should think that the indef-
inite extensibility doesn’t extend to platonistic instances. If  were denied
on this ground, then the “second-order nominalist” would presumably
not be able to deduce anything that the first-order nominalist can’t. The
second order option would simply be irrelevant: we ’ d have deductive
conservativeness even in the second-order case, but no representation
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theorems stronger than those in the first-order theory. I’m not advocating
this viewpoint, but perhaps it isn’t out of the question.

Alternatively, I suppose that one could think that schematic letters
even in empirical theories are required to be indefinitely extensible (even
to vocabulary employed only in extensions of the original theory that the
advocate of the original theory rejects). That would involve giving up 
(and the last sentence of .) On such a view, the claim of conservativeness
might be deemed misleading: it would still be correct if N+ S is
understood as simply the union of N and S, but on this viewpoint that
might seem too anemic a reading of “adding” S to N. But I don’t see that
this viewpoint has much appeal. (Indeed, I’m inclined to stipulate that to
regard a comprehension schema for regions as indefinitely extensible
in this way just is to treat the schematic letters for predicates as logical
variables, and thus to invoke at least a fragment of second-order logic
(the �

 fragment). Similarly, I’m inclined to stipulate that to regard an
induction schema for a finiteness predicate as indefinitely extensible just
is to treat finiteness as a logical notion.)

... Summary: Conservativeness and Representation Theorems

To summarize, I concede to the book’s critics that Chapter , in combina-
tionwith themiddle chapters, was rathermisleading: together, they could
well be taken to suggest that it is possible to simultaneouslymaintain both
the syntactic conservativeness of mathematics and the full representation
theorems of those middle chapters. As Shapiro (a) rightly says, you
can’t have both.

I noted this myself in Chapter  of the book. I didn’t there rule out
keeping the full Hilbert-like representation theorems and taking the rele-
vant conservativeness to be semantic conservativeness for the “complete
logic of Goodmanian sums”; but I did make two not-very-developed
alternative suggestions, one for going fully first order and the other for (in
the terminology just used) going “almost first order” but using a primitive
finiteness quantifier. In the book it probably appeared that this required
giving up on representation theorems, but I made clear in the a paper
that this is not so, it merely requires generalizing them by allowing for
representing fields that are not quite the real numbers but are extremely
similar. In the purely first-order case, we need no notion of conservative-
ness beyond the syntactic, but a price is that the representing fields may
be non-Archimedean. In the “almost first-order” case the representing
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fields are all Archimedean, but we require a notion ofω-conservativeness,
which goes beyond the syntactic but isn’t nearly as strong as the kind of
semantic notion of conservativeness contemplated at some points of the
book. I now think that both the purely first-order and “almost first-order”
options are vastlymore attractive than the optionwith the “complete logic
of Goodmanian sums”.

So, while the early part of the book is rather misleading, I still think
that the basic line of Chapter  is right: the only obvious requirement on
a good mathematics is that it be conservative, not that it be true.

.. Indispensability
Platonism is usually construed as requiring both the existence of mathe-
matical entities and the objectivity ofmathematics (in the sense described
earlier in this Preface); and the “Quine-Putnam indispensability argu-
ment” (Putnam ) is usually taken as an argument for platonism in this
strong sense. At least when platonism is so construed, then I stand by the
view that there is no serious argument for it other than the indispensabil-
ity of mathematical entities to things outside mathematics (though this
could include more than basic physics, e.g. it could include the metathe-
ory for logic). But how good is even that argument? Of course if the nom-
inalization program of SWN could be carried out, it would not ultimately
be a good argument for any form of platonism. But in this section I will
take for granted the premise that the program of nominalizing theories is
likely to fail. Andmy question is, how good is the argument for platonism
on that assumption of indispensability?

We need to separate the question of how good the indispensability
argument (taking that indispensability premise for granted) is as an argu-
ment for mathematical objects and how good it is as an argument for
objectivity. The extensive recent literature is focused much more on the
first than on the second,F and I will start out with that.

F An exception is Hellman , who advocates using modality in connection with
higher-order logic to eliminate mathematical objects from physical theory and elsewhere,
but thinks that the indispensability argument is still important for objectivity. (Putnam’s own
view wasn’t all that different: see Putnam .) I’ll say a bit about his view in section .F.
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... Objects

I now think that the indispensability argument for the existence of math-
ematical objects is somewhat overblown. There’s a great deal of recent
literature in this direction (e.g. Yablo  and , Sober , Melia
, Maddy , Leng  and ). There is also some interesting
work in partial defense of the indispensability argument (e.g. Colyvan
, , , and Baker ); and one obvious challenge to those
who would deny the relevance of the argument is that doing so seems
to remove the means of deciding ontological questions. I don’t have
a worked out opinion on all of the issues involved in this literature, but
I will make some tentative remarks on some of these issues and on some
related ones.

First, on my understanding of the indispensability argument: discus-
sion of this argument (especially by those who emphasize its roots in
Quine as opposed to Putnam) is very often tied to some doctrine of
“confirmational holism”, whose content tends to be left unclear. (It is
sometimes formulated as the claim that all parts of our best theories
are equally confirmed; that formulation has the advantage of being fairly
clear, but the disadvantage of being totally preposterous.F) In stating
the indispensability argument it’s better to avoid any explicit talk of con-
firmation, and talk instead of what to believe. As a crude first try, we
might say:

We should believe (e.g.) quantum electrodynamics, since it explains so many
things and there’s no decent competitor that does so. Quantum electrodynamics
entails that there are mathematical entities. So we should believe that there are.

(A somewhat more nuanced version would take into account that there
are bound to be competing theories we don’t know about, and involve as
a premise that the competitors are likely to also entail that there aremath-
ematical entities.) I don’t see that anything worth calling “confirmational
holism” is implicit in this.

Quine advocated the indispensability argument in the context of the
view that mathematics is fairly straightforwardly empirical—empirical
in just the way that entrenched physical principles like the conservation

F Does anyone really think that, in the early years of general relativity, the existence of
gravitational waves and of black holes was as well-confirmed as the equivalence of inertial
and gravitational mass or the gravitational redshift?



OUP CORRECTED PROOF – FINAL, //, SPi

P- preface to second edition

of energy-momentum are. (Some sort of “confirmational holism” may
be relevant to this.) I was inclined to resist that view: indeed I took the
conservativeness of mathematics, according to which good mathematics
is compatible with any internally consistent theory of the physical world,
to tell against the idea that mathematics has any empirical content in any
ordinary sense.F Quine’s view seems to have been that if a certainmath-
ematical theory S proves indispensable to (e.g.) a basic physical theory T,
then the empirical evidence for Twould be evidence for S, and so S would
in a straightforward sense be empirically confirmed. But as Sober has
emphasized, the assumption that evidence for T is evidence for S appears
to rely on a discredited view of evidence and confirmation (the “conse-
quence condition”). Indeed, my focus on conservativeness was supposed
to indicate that S was already completely acceptable as mathematics, so
no evidence could raise its status.

But there is another way of thinking about the bearing of indispens-
ability arguments on empiricality, that doesn’t rely on the consequence
condition. For if we assume that there are possible physical theories in
which mathematical entities are indispensable as well as possible ones
where they aren’t, the indispensability argument seems to require us to
think that empirical evidence that favors theories of the first sort over
theories of the second should enhance the extent to which we have literal
belief in mathematical entities (as opposed to merely accepting them
on conservativeness grounds).F So if, for instance, classical physics
were completely nominalizable while quantum physics isn’t, then the
early th century would have provided massive empirical evidence for
the existence of mathematical objects (even though our mathematical
theories would have already been fully acceptable for use in many con-
texts on conservativeness grounds). I don’t think I really faced up to
this unappealing consequence of taking indispensability arguments as

F I’d occasionally flirted with, though never advocated, the view that logic is empirical.
If it is, then since mathematics like every other discipline uses logic, maybe that’s enough
to make mathematics in some sense empirical. But I took the conservativeness of math-
ematics to show that, on any reasonable measure of “empirical content”, mathematics has
no empirical content beyond that of the logic it employs.

F More carefully: the evidence favors theories of the first sort over “atheistic variants”
of theories of the second sort: variants which dispense with the mathematical entities and
add the claim that there are no such things.These atheistic variants have the same empirical
contents as the originals.
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decisive for mathematical ontology.My hope was that mathematical enti-
ties would prove indispensable to any reasonable fundamental physical
theory, whether correct or not, so that insofar as evidence is limited to
the selection of one “reasonable” fundamental theory over another it
would prove irrelevant to the belief in mathematical entities. Of course
this would make the task of establishing the requisite dispensability all
the harder.

Indeed, to some extent my hope wasn’t limited to fundamental the-
ories. Of course, non-fundamental theories (including those in physics,
such as thermodynamics and continuum mechanics) are accepted only
as approximations, so any nominalistic formulation of them would
obviously have to make use of false idealizing assumptions. That doesn’t
undermine the interest of trying to provide intrinsic nominalistic formu-
lations of such theories based on such false assumptions. But it isn’t clear
that a reasonable response to an indispensability argument would require
this: see the remarks on “intellectual doublethink” to come.

In any case, a view with obvious appeal is that indispensability argu-
ments in mathematics simply have no force: that mathematics is just
the framework in which physical theories (and other theories, includ-
ing e.g. theories in metalogic) are stated, and that there’s no reason
to literally believe the framework. Since the physical theory entails
aspects of the framework, then if we don’t believe the framework we
can’t literally believe the theory, but can still believe it relative to the
framework.

Despite its obvious appeal, this viewworriedme, because I didn’t know
how to respond in any detail to someone who took the analogous view
of subatomic particles: that talk of them is just the framework in which
modern physical theories are presented, and that there’s no reason to
literally believe in them. Of course I was aware of a possible response: that
we should regard as framework only those aspects of a theory that play
no causal role. But that seems unhelpful: a claim about a function from
configuration space to the complex numbers does enter into explanations
of how a physical system behaves, and if such a claim can’t be expressed
nominalistically then it’s hard to deny that it plays a causal role (or at any
rate, hard to see the content of such a denial). Why then shouldn’t it be
literally believed? Perhaps the claim would be that what are to be literally
believed are only facts about causally relevant entities, and this excludes
the complex numbers (and the configuration space, and the functions
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from the latter to the former). But even aside from general unclarity in
the notion of causation, the notion of a causally relevant entity is especially
unclear, and a platonist might well respond to the suggestion (as I did on
behalf of the platonist in Field b) by saying that

if mathematical entities are theoretically indispensable parts of causal
explanations . . . , there seems to be an obvious sense in which they are causally
involved in producing physical effects; the sense in which they are not
causally involved would at least appear to need some explanation (preferably
one that gives insight as to why it is reasonable to restrict [indispensability
arguments] to entities that are “causally involved” in the posited sense). (p. )

Lacking a good response to the apparent analogy between mathemat-
ical objects and subatomic particles, I took a hard line: that it is “intel-
lectual doublethink” to fully advocate a physical theory that postulates
mathematical entities while at the same time denying the existence of
mathematical entities. (‘Fully advocate’ means something like ‘advocate
as literal truth, not as mere approximation’. So the “intellectual double-
think” charge has no direct application to non-fundamental theories,
which inherently involve approximations.) Of course one might with-
out doublethink accept the physical theory as a temporary expedient
that one would have to make do with until a program for eliminating
the mathematical entities was carried out; and even after the “nominal-
ization” had been carried out, one might without doublethink accept
the original “un-nominalized” theory as a convenient calculational or
heuristic device whose legitimacy turns on the nominalistic theory that
underpins it.

Many of the opponents of indispensability arguments mentioned
early in this section have stressed that in theories like continuum
mechanics—non-fundamental theories which presumably are accepted
only as approximations—wemake a lot of use of knowingly false assump-
tions about the physical world. They seem to take this as showing that
it’s perfectly OK to use mathematical assumptions that we believe false in
physical theories that are assumed to precisely describe the physical world.
It’s hard to see their argument here, and indeed the argument could well
seem to go the other way. For a great deal of effort in physics is devoted to
explaining, from fundamental theories assumed for the sake of argument
to be precisely true, why the theory with false assumptions works as well
as it does. So if we assume mathematics false, shouldn’t the moral be that
wemust explain why theories that employ it work as well as they do, using
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a literally true theory in the explanation?That is the project of SWN, and
it is still my view is that it is highly advantageous to do precisely that.F

But the indispensability argument requires not only that it is better to
explain the use of ideal or fictional objects in terms of things one literally
believes in whenever one can, but that it is compulsory. This seems like
dogma: why should we rule out that there might be circumstances where
even in one’s fundamental physics one has to employ some devices that
one thinks of instrumentally? Yablo  raised this challenge forcefully:
once one has granted (as I did in my discussion of conservativeness and
representation theorems) that it is legitimate and useful to appeal to fic-
titious objects to facilitate the adjudication of inferences, why shouldn’t
one also grant that it can sometimes be legitimate and useful to appeal to
such objects directly in the representation of the physicalworld (including
the representation of features that enter into explanations)? Yablo didn’t
stress to the extent I would have that it is better to look for theories and
explanations that don’t involve fictions, when they are available, but still,
his challenge seems to me correct. If so, the “intellectual doublethink”
charge was wrong.

This does make pressing the question of how to distinguish between
the instrumental part and the non-instrumental. I don’t pretend to have
anything like a general answer. In the special case of mathematics, a nat-
ural idea (somewhat motivated by the remarks on cardinality quantifiers
above, and perhaps also by recent literature on deflationary theories of
truthF) is that without ontological commitment, mathematics can be
used both to increase our power to describe the physical world and to
make generalizations about it. As Yablo puts it, “The nominalist rejects
mathematical ontology, not mathemathical typology” (: ). The
restriction of mathematics to this expressive and generalizing role lim-
its the way that mathematics can be used in explanations, but certainly
doesn’t eliminate its use in explanations: for instance, mathematics might
provide the most efficient way to state what is in common to all the stable
states of a certain physical system, or what oscillating pendulums and
electronic oscillator circuits have in common. By contrast, the role of
subatomic particles in physics seems to have more than such a purely
expressive/generalizing role.

F This paragraph has been influenced by discussion with Cian Dorr.
F An analogy to deflationary views of truth is pressed in pp. – and note  of Yablo

.
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Of course, these remarks are extraordinarily sketchy: we need a much
more thorough investigation of the distinction between allowable and
unallowable ways for a nominalist to use mathematics in explanation.
(Section  of Yablo  gives some first steps.) And I’m not sure to what
extent quantification overmathematical entities is really required in these
cases: for instance, the harmonic oscillator equations in a given domain
can certainly be presented nominalistically, and their common form in
various domains should be evident without the mathematical entities.
Still, I’m convinced that we should allow for the possibility of taking some
features of even fundamental theories as instrumental (though we should
also try tominimize the extent to which we rely on instrumental devices).
As a consequence, I’m still inclined to the anti-platonistic metaphysics of
the book, despite skepticism that the project of nominalistically formu-
lating every fundamental theory we care about can be carried out.

But I don’t think that this skepticism completely undermines the
relevance of SWN to the issue of nominalism, or anti-platonism more
generally. For one thing, I think the book helped clarify the role that
mathematical entities play in science, and how this role differs from the
role that physical entities play. It was already clear that the roles differ: as
noted, it’s natural to say thatmathematical entities aren’t causally involved
in producing physical effects in the way that electrons and quarks are. But
as also remarked, it is less than clear what this difference comes to, given
that mathematical entities like physical entities are appealed to in typical
(i.e. platonistic) explanations of those physical effects. I think it likely that
the content of the difference in the “causal role of the entities” must be
based on differences in the roles of these entities in explanations that can
be expressed independently of causal talk. And I think that SWN went
at least some way toward clarifying that difference in explanatory role. In
part it did this by making plausible that much of the role of mathematical
entities in science is to serve in representations that are not needed in
the underlying (“intrinsic”) formulations of the physical theory and that
have a systematic arbitrariness. (Of course there were antecedents to this,
both in the literature onmeasurement theory and the literature on tensor
formulations of physical theory; but SWN carried the ideas further.)

SWN was almost certainly over-optimistic in suggesting that, at least in
fundamental science, all use ofmathematical entities in representing non-
mathematical structure is eliminable. But even if there are theories that
can’t be presented without the “fiction” of mathematical objects, I think
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that the methods of the book could be used to express a great deal of
their content in a nominalistic manner, far more than had hitherto been
believed. I think that in evaluating the claim that a certain representa-
tional device in a theory should be regarded as a fiction, it matters how
much can be done without what is claimed to be a fiction. The exact role
that these devices are playing in the theory also matters: an analysis of
that rolemay lessen the extent to which an argument for the non-fictional
status of these entities is convincing. For instance, if the role of sets in
physical theory were simply to allow us to assert the local compactness of
physical space, would this really provide a convincing case for platonism?

I recognize of course that much of what I’ve said here (especially the
last point) is vague and deserves more discussion; let me simply say that
the proper context for the debate referred to, between Colyvan and Baker
on the one side and Yablo, Sober, Melia, Maddy, Leng, and others on the
other, is best carried out in the context of an appreciation that the essential
role of mathematical entities in formulating scientific theories (especially
fundamental scientific theories) is far less than it initially appears to be.

... Objectivity

I’ve been speaking of the indispensability argument as an argument for
the existence of mathematical objects. But as I’ve mentioned, platonism is
often understood as requiring in addition (or instead) a kind of objectivity
of mathematics, exemplified by the view that questions such as the size of
the continuummust have uniquely correct answers. It seems to me pretty
clear that most indispensability arguments will not secure this sort of
objectivity. For themost convincing indispensability arguments are argu-
ments that we can’t adequately characterize physical structures except by
reference to mathematical structures: e.g. that we can’t adequately char-
acterize quantum systems without configuration spaces, or gauge fields
without fibre bundles, or whatever. In these examples, the role of mathe-
matical entities in theorizing that is not easily shown indispensable is their
role as exemplars of possibilities: mathematics provides rich structures
that are not found in the physical world but that are nonetheless highly
useful in describing the physical world since we take the physical world to
contain isomorphic images of substructures of them. (See Shapiro b.)
But in its role as a source of rich structures, set theory with one choice of
continuum size and set theory with another choice are equal: if math-
ematics with one choice for the size of the continuum were used in an
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application, one could use mathematics with another choice for the size
as well (if need be, by constructing a model for the second mathematics
within the first).F Even supposing that it is an objective matter whether
physical lines containℵ points (which of course couldwell be doubted),
it doesn’t follow that the acceptability of a mathematics that says that
the continuum has size ℵ should turn on this: for on a platonist view,
physical lines are one thing and the mathematical continuum (the set
of real numbers as defined via Dedekind cuts) another. (That had better
be the platonist view, since space-time is just one application of the real
numbers, and there’s no obvious reason to think that in other applications,
e.g. to degrees of belief, the non-mathematical reality to which the reals
are typically applied has the same structure as the lines of space-time.)
Whatever one’s view of the size of the platonist continuum, physical lines
can be accommodated, and so it isn’t obvious how an indispensability
argument could motivate the objectivity of mathematics.

.. Other Forms of Anti-Platonism
The book may have implicitly underestimated how many ways there
are of being “anti-platonist” in an intuitive sense without saying
that mathematical theories aren’t literally true if taken at face value.
One apparent alternative that I’m attracted to would be to regard
mathematical theories as “true by convention”: any mathematical theory
that is conservative is true for any community that adopts it.F (If one
were to defend this line, one would need to decide between regarding
mathematical entities as existing by convention, or denying that ‘p’ being
true by convention entails p. The first alternative strikes me as more
attractive—though the choice between them might itself be a matter
of convention. Either way, one needs a bit of care to avoid anomalous
behavior in counterfactuals whose antecedents concern our having

F The limitations on “innermodel” proofs do not prevent this: the secondmodel could,
for instance, be the result of collapsing the Boolean valued model given in an independence
proof by an ultrafilter.

F A variant, perhaps cleaner, would be that if there is a possible convention according
to which a given mathematical theory would be true by convention, then it is true of part of
mathematical reality already, even if the convention isn’t adopted.This would be pretty close
toMark Balaguer’s “plenitudinous platonism” (), which I think shares a key feature with
the anti-platonism of SWN: it rejects the idea that on questions such as the cardinality of
the continuum there is a uniquely right answer.
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adopted conventions that conflict with those we’ve actually adopted;
perhaps a two-dimensional modal framework is the way to go.)

Quine  had given a famous regress argument against the view
that what we regard as logical truths get their truth by convention (and
presumably, that what we regard as truth-preserving logical inferences get
their truth-preservingness by convention). It ismost directly an argument
against their being true (or truth-preserving) by explicit convention; but
it is widely thought (rightly or wrongly) that his argument extends to
implicit convention too, on the grounds that one would need logic to
determine what the consequences are of consistently employing the basic
rules that describe the implicit convention. If one assumes that logic and
mathematics have the same status, then his arguments would indirectly
tell against truth by convention for mathematics too. But in the book
I denied that logic and mathematics have the same status, so the idea
that mathematical theories are true by convention would seem an option
even if one concedes that Quine’s case against the conventionality of logic
extends to implicit convention.F

I call this an apparent alternative, since there doesn’t seem to be awhole
lot of difference between regarding a theory as true by the convention
we’ve adopted and its being true according to the fiction we’ve adopted. But
perhaps “truth by convention” can more easily be regarded as a kind of
literal truth, and perhaps there might seem to be less force in a demand
to avoid “truth by convention” in basic physics than to avoid “fictional
truth” in basic physics.

There may also be other ways of developing the idea that mathematics
is true, but not in a way that would support “real platonism”. But I remain
less than convinced that the distinction between any such “truth but of a
lesser sort” view and a “not literally true” view is of any deep significance.

.. Miscellaneous Technicalia
(A) Integral Calculus

Although this has been little commented on, SWN was incomplete even
for Newtonian gravitation theory, because (as I noted in its “Preliminary

F The admirable discussion of mathematical epistemology in Rosen  seems to me
to point in the direction of mathematical conventionalism, though Rosen does not draw
that conclusion.
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Remarks”) it didn’t deal with integral calculus, only differential. While
I believed, and still do, that this could have been remedied had I taken
the trouble to do so, I don’t think I fully appreciated the extent to
which we don’t have a satisfactory formulation of the theory until it is
remedied.

More fully, the nominalistic theory that I give generates a platonistic
theory that doesn’t explicitly talk about masses, but only about mass-
densities at points. Of course, the mass-densities at points in conjunc-
tion with the volume element determined by the metric are enough to
determine themasses assigned to regions (i.e. themasses of what occupies
those regions), when the mereological space is atomic as SWN assumes.
But this supervenience of the masses on the mass-densities (plus metric)
doesn’t seem tome enough: after all, our observations are of (comparisons
of) the masses of extended objects, not of the mass-densities of points,
and we ought to want a theory in which we can express our observations.
If we keep comparisons of mass-density as primitive, we need an explicit
theory of how they, together with the geometric properties, determine
the comparisons of mass. That’s what a nominalistic analog of the the-
ory of (multi-dimensional) integration would provide. (We could also
switch to usingmass-comparisons rather thanmass-density comparisons
as primitive; that’s probably more natural. But even so, we ’ d need to then
introducemass-density comparisons derivately if we are to state the field-
theoretic form of theNewtonian theory, and the integration theorywould
be needed for a full picture of how themasses andmass-densities, or even
volumes and distances, interrelate.)

A somewhat related point is that the treatment of Laplaceans is inele-
gant, and arguably not in accordance with the rather vague requirement
of intrinsicness I had imposed.F A better treatment would involve a
nominalistic analog of the volume element -form, which is one (small)
part of a proper treatment of multi-dimensional integration.

F The systems of three vectors, orthogonal and of the same length, look very much
like Cartesian coordinate systems (though admittedly, in making the comparisons of the
Laplacean at different points I didn’t demand that the three directions be the same at the
different points). What’s relevant isn’t the systems of three vectors, but the volumes they
span; or rather, the comparison of volumes at different locations. (The gradient contra-
vector is also required in a proper treatment, which means that the material in section H
and I would need to have come earlier. The order in the text is rather odd anyway, since of
course the Laplacean is just the divergence of the gradient.)
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While I haven’t worked out the details of a nominalistic counterpart to
the theory of measure and integration, I don’t have much doubt that the
general idea of what I was doing could have been extended to deal with it.

(B) Point Particles

Another lacuna, noted and discussed on p.  of Arntzenius and Dorr
, is that I speak of point-particles in a context where there is a con-
tinuous mass-density distribution; and it is not obvious how to fix this.
I appreciate the problem, but I think that it isn’t specific to the nominalist
project, it’s an issue for the platonist theory being nominalized. (And
while I could have considered action-at-a-distance formulations of New-
tonian gravitation that don’t raise the problem, I was trying to illustrate
how field theories more generally would be dealt with; and the problem
is a general one for standard platonist formulations of field theories.)

(C) The Gravitational Constant, and Comparativism
about Quantities

There is another possible lacuna whose significance was only recently
brought home to me, by David Baker (manuscript (a)): my nominal-
ization of Poisson’s equation is really just a nominalization of the claim
that there is a positive value of the gravitational constant G for which the
equation holds; it doesn’t fix the actual value of G.

Here’s how I defended this:

The absolute value of the proportionality constant has no invariant significance
within this theory: to give it significance you have to impose independent con-
straints on the mass scale and the scales of other quantities. (p. )

That is literally true, but may obscure the fact that the proportionality
constant does have significance relative to a choice of scale for the other
quantities. As Baker emphasizes, this is important because the value of
the gravitational constant is relevant to whether the gravitational binding
energy of a system of moving particles suffices to hold it together.

So something needs to be said about how that relative value of the
gravitational constant is to be stated in nominalistic terms. Of course it’s
easy enough to do that; the simplest way is to fix three points in a region
of varying gravitational potential on the trajectory of a single specific par-
ticle (with non-zeromass). But theremay seem to be something inelegant
in focusing on three specific points of a given trajectory.
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The issue here—and the focus of Baker’s discussion—isn’t really nom-
inalism per se, but comparativism, the view that what’s physically fun-
damental is scale-independent relations among objects. (Comparativism
is defended in a platonistic setting in Dasgupta , and that paper is
Baker’s focus.) But comparativism is fairly central to Science Without
Numbers,F so the issue deserves discussion.

An initial worry about comparativism is that the mass scale, like the
gravitational constant, seems physically relevant: uniformly increasing all
masses with the gravitational constant fixedmakes for more gravitational
collapse, in just the way that increasing the gravitational constant with
the values of the masses fixed does. So it is natural to accept counterfac-
tuals like

If the positions and velocities of all particles relative to an inertial frame at a given
time were just as they actually are, and so were their mass ratios, but the absolute
values of the masses were bigger, then (with the gravitational constant held fixed)
there would be more gravitational collapse.

Since increasing all masses by the same factor is like increasing the grav-
itational constant, the discussion of how the value of that is fixed might
suggest that we simply modify the counterfactual by replacing “but the
absolute values of the masses were bigger” by “but the angle at the tem-
porally second vertex of the triangle determined by three points on the
trajectory of such and such particle was bigger”. (We could then drop
the parenthetical clause about the gravitational constant.) But in the con-
text of such a counterfactual it may seem more obviously inelegant to
rely on the specific points on the trajectory of a specific particle. (We
could instead replace the phrase by “but the trajectories of all particles
were more concave”, but that not only invokes a great deal of redundant
information, it tends toward trivializing the counterfactual.) That’s the
initial worry.

But in fact there’s no need to deal with the counterfactual in such an
inelegant way. For as Baker pretty much notes,F the language of Science
Without Numbers will require talk of the velocity of a particle (relative to
a rest frame) at a given time to be restated, in terms of position (relative

F Dropping it would pretty much require moving to a theory with primitive mass
properties, of the sort mentioned early in Chapter  and developed by Mundy.

F Since his discussion isn’t focused particularly on nominalistic views, I’m abstracting
a bit.
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to an inertial line) throughout some interval; and that is enough to deter-
mine the acceleration of all particles throughout that interval. In other
words, the counterfactual would have to read something like

If the positions of all particles (relative to an inertial line) throughout a given
interval were just as they actually are, and sowere theirmass ratios, but themasses
were bigger, then (with the gravitational constant held fixed) there would bemore
gravitational collapse.

But then the antecedent of the counterfactual is a nomic impossibility:
even in the platonistic theory, the rest of the antecedent together with the
fixed gravitational constant rules out the masses being bigger.

Baker’s paper, while dismissing the initial worry in pretty much this
way, argues that a more sophisticated worry akin to it survives. This
is based on toy examples according to which there are periods of time
during which all accelerating particles are in regions of unchanging grav-
itational potential, so that there is nothing during these periods to fix
the value of the gravitational constant. Baker then points out that, if
these idealized examples are accepted, there will be odd violations of
determinism and of certain natural locality principles in theories that take
mass-comparisons as opposed to quantitative mass as basic. While not
crippling, this looks on its face as something of a worry for SWN, or any
other view which eschews the use of scale-dependent relations between
physical objects and numbers in the physical laws.

One thing to note about the threat is that Baker’s examples are toy
not only in employing universes much simpler than the actual, but in
making various not-obviously-innocent idealizations. His most convinc-
ing example is his “shell-plus-projectile world”, with a uniform spherical
shell and a projectile that somehow can pass through it; while the particle
is in the interior of the sphere there is no net gravitational force on it,
so that the path of the projectile during the interval when it’s inside the
sphere doesn’t determine the gravitational constant. Baker needs that
nothing during that interval that can be stated in non-quantitative terms
determines the value of the constant; for this it is essential that the shell
be of continuous matter whose parts don’t accelerate in the slightest.
(No electrons circling around nuclei, etc.) And that requires that there
be non-gravitational constraint forces among the parts of the shell that
precisely counteract the gravitational forces on them, even though those
gravitational forces on the parts are changing slightly as the projectile moves
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from one part of the interior to another. It would be a tall order to invent
laws for the constraint forces with this feature.

Nonetheless these are the kind of toy examples one often uses in
physics, and I’m not entirely comfortable dismissing them as irrelevant.
Fortunately there are other resolutions of the “sophisticated worry” from
two paragraphs back. In particular, Baker has another paper (manuscript
(b)) with an alternative solution, which invokes the sort of “mixed com-
parative relations” that I will motivate on two independent grounds, in
subsections (D) and (E).

(D) Avoiding the Notion of Finiteness

In section B of Chapter , I said that to define a predicate comparing
ratios of distances with ratios of scalar intervals, we need to invoke the
binary predicate of one region ‘containing fewer points than’ another, or
a restricted version of this that applies only between finite regions. This
raised an issue for the purely first-order version of the theory: in absence
of representation theorems that restrict distances and the scalar in ques-
tion to Archimedean scales, there will be models in which the ratio-
comparison predicate has non-standard application even to finite regions.
I argued that this isn’t a decisive difficulty, because we could still get a
pretty good axiomatization of the predicate using an induction schema;
still, it provided some push toward a not-purely-first-order theory with a
primitive cardinality quantifier.

Burgess and Rosen :  suggest that this was all beside the point,
since for defining a predicate comparing ratios of distances with other
ratios of distances we don’t need cardinality comparisons, we can use the
multi-dimensional affine structure. But while that’s fine for comparing
distance-ratios to other distance ratios (at least in the case of flat infinite
space), it doesn’t deal with the mixed-scale predicates that were at issue
in section (B).

Burgess : makes a different suggestion (which he credits to Saul
Kripke) that does deal with such predicates: thatwe continue to use a ‘con-
tains fewer points than’ predicate but define it, using regions consisting
of non-intersecting physical arcs to express – correspondences. While
I don’t find the suggestion altogether appealing, it would seemadequate to
the needs of the theory. Of course, axioms about these physical arcs would
have to be added to ensure that the needed properties of ‘fewer than’
followed from the definition. I’d suspect that taking ‘contains fewer points
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than’ as primitive and axiomatizing it gives rise to a simpler theory, but
confess that I haven’t thought about this enough to say sowith confidence.

A quite different alternative, which avoids the need for cardinality com-
parison in the theory, is to give up on defining the mixed-scale predicates
in section (B), and instead altering the basic ideology to include some
of them. Indeed, Burgess himself suggests this earlier in the paper, with
his Qs predicate (Burgess : –). One would need only one such
primitive Qs predicate for each scalar in the theory: it relates the ratios
of that scalar to geometric ratios, and the affine structure can then do
all the rest. (We could drop the betweenness and congruence predicates
that I used for the scalar; they would be definable from the Qs predicate
together with the geometric predicates.) As Cian Dorr emphasized tome,
this approach avoids not only the need for cardinality comparisons but
also the need for regions bigger than a point (for anything other than
ensuring that the lines have structure more like the real numbers): in
other words, it allows for a nominalistic theory that is elementary in the
sense of Tarski . Moreover, as we’ll see next, there are other reasons
for using such mixed-scale comparative predicates. All in all then, this
approach probably yields the simplest overall theory.

But I remind the reader of the claims in section .: there are reasons
independent of physics for wanting ‘fewer than’, ‘finitely many’, and other
cardinality quantifiers that aren’t definable in first-order logic. Such quan-
tifiers have more general applications than in comparing the number of
points in a region: e.g. for any predicate F of regions, it would allow us to
say that there are only finitely many regions that are F. With a bit more
apparatus, e.g. predicative second-order logic, this would enable you to
define a fair notion of compact region. While I didn’t need this for my
purposes in the book, I’m inclined to regard it as perfectly legitimate even
from a nominalistic point of view that eschews fictional devices.

(E) Point Masses without Restrictive Structural Assumptions

One of the reasons I assumed an absolutely continuous mass distribu-
tion rather than discrete point masses is that the obvious representation
theorems for mass require structural assumptions about the quantity that
don’t obviously have to be met for point masses. For instance, given point
masses, there’s no obvious reason to assume one for which all other point
masses are multiples of it in mass; but without that, it seems unobvious
how to give a representation theorem. Arntzenius andDorr point out that
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for certain theories there are tricks one can employ for doing this, but
conclude that a general approach requires positing a special “mass space”;
similarly, a special “charge space”, and so on for other quantities. (As they
note, this is really the same as the proposal of Mundy , of taking
the basic comparative notions employed in the theory to relate physical
properties such as that of having a particular mass; they argue (p. )
that the Mundy formulation may disguise the commitments of the view.)

Zee Perry  has argued, though, that there is an attractive way
(which she motivates on independent metaphysical grounds) to handle
this without quantifying over physical properties or points of quantity
spaces.The idea is to take quantities like mass and charge as derivative on
space-time, by axiomatizing them with “mixed” comparative predicates
(of objects or points of ordinary space) that involve distances as well as
the quantities of direct concern. The predicates in question will be like
Burgess’s Qs, in effect comparing ratios of the quantities in question (e.g.
mass) with ratios of distances (or of volumes, or of some such spatio-
temporal magnitudes). Since the distances (or volumes or whatever)
can vary continuously even if the masses don’t, this handles the worry
rather well, and I’m inclined to think this a considerable improvement
over the approach in the book.F Especially since it has the additional
advantages noted under (D).

And as Baker (manuscript (b)) notes, a particular version of this also
resolves the issues in (C) in a way that doesn’t require kvetching about the
toy examples. The key is to use, instead of ordinary mass-comparisons,
predicates that compare mass multiplied by the square of time-interval
divided by the cube of distance, or equivalently, density multiplied by the
square of time-interval. This in effect takes mass just to be the gravita-
tional acceleration it induces at a distance r multiplied by the square of
that distance; there is no need of the constant G to get from one to the
other, so the issues raised by the inelegant fixing of it disappear.

(F) Dispensability via Modality?

In some papers in the s, in particular in Field , I took a skeptical
line toward the idea that there is an interesting way to use modality to

F These new primitives can be viewed as comparisons of single quantities, just less
familiar ones than usual: in the volume case, we’re comparing the average mass-density of
regions, in the distance case it’s a comparison of what we might call “matter-displacement”
(mass times distance displaced).
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dispense with mathematical objects. Part of my criticism was directed in
particular toward nominalistic theories of the sort

T♦: Possibly, the concrete world is just as it in fact is, and T.

In particular, I argued that theories of this sort are “too cheap” in that
they could be trivially modified to avoid commitment to subatomic par-
ticles. But as Dorr  argues, while this cheapness argument is telling
against theories of the sort T♦, it isn’t clear that they have force against an
alternative style of modalized theories:

T� : Necessarily, if M and the concrete realm is just as it in fact is,
then T

(where M is an impure mathematical theory). And it is theories in the
style of T� rather than T♦ that were advocated shortly afterward in
Hellman .

But the main points of Field  apply at least as well to T� theories
as to T♦. These points concern the question of how we are to spell out the
content of the concreteness conjunct (“the concrete realm is just as it in
fact is”), without appeal to mathematical entities. After all, we normally
describe the physical world using mathematical entities; but obviously if
the claims of form “A if and only if actually A” that are built into the con-
creteness conjunct were taken to include those where A quantifies over
mathematical entities, the theorywould in noway be nominalistic.On the
other hand, if such platonistic A are excluded, there is a substantial worry
that we won’t have enough left to sufficiently describe the concrete world.

This worry is actually worse for T� theories than for T♦ theories,
because for a T� theory to be true the description of the concrete world
must be rich enough so that it together with M necessitate the platonistic
theory. Just how serious the worry is may depend on how austere our
conception of necessity is. (I myself am rather puritan about this, being
suspicious of modal talk that isn’t explainable in terms of logical modality,
where the logic is first order, or first order plus some cardinality quanti-
fiers. But that’s too big an issue to discuss here.)

It is of course clear that, were the non-modal nominalization program
successful, one could use the nominalistic theory N to formulate enough
of the concreteness conjunct to guarantee T�: replace that conjunct by
“N if and only if actuallyN”. But it is equally clear that thatwouldmake the
use of modality redundant.Whether there is any satisfactory way short of
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this to spell out the concreteness conjunct and the modal operator so as
to guarantee T� is a question I will not pursue here.

(G) General Relativity

Finally, I’ll expand a bit on the suggestion in the book (last paragraph of
footnote ) for how to extend the nominalistic treatment to the curved
space-time of general relativity. (This is still only the barest of sketches.)

Oneway to implement the suggestionwould be to replace the between-
ness and congruence predicates by more general primitives: perhaps a
four-place predicate “point y is between points x and z relative to region
R”, meaning intuitively that there is a geodesic segment in region R with
endpoints x and z that contains y; and a five-place predicate “x,y parallel-
congruent to z,w along geodesics within R”, meaning intuitively that any
R-geodesic segment from x to y, when parallel transported along any
R-geodesic segment from x to z, results in an R-geodesic segment from
z to w. Using the first, we can define the idea of a region R being convex
normal, meaning that (it has at least two points and) any two points in it
are connected by exactly one geodesic lyingwholly within it. (This implies
that geodesics don’t self-intersect inR.) Among the axioms governing this
predicate will be that each point is contained in such a convex normal
neighborhood. The second predicate is needed to parameterize geodesic
segments: we parameterize such a segment, up to a scale factor, using
parallel transport of short subsegments of it along it.

When R is convex normal, then for any x, y, and z there will be at
most one w such that x,y is congruent to z,w along geodesics within
R. There needn’t be one: the convex neighborhood might be “too small
near z”. But we’ll impose axioms that guarantee (i) that for each x, y,
and z, some subsegment x,y′ of x,y starting at xwill be transportable along
x,z; and (ii) that if there is such a w, then transporting any “shortening of
x,y by scale factor α” along x,z will result in a “shortening of z,w by scale
factor α” (where the scale factors are with respect to the parameters of the
respective geodesics). Together, these mean that the information about
parallel transport of vectors in the tangent space that might appear to be
lost in the translation to geodesic segments of limited length isn’t really
lost. (This is just another example of a technique employed several times
in Chapter , of using the linearity of derivatives to overcome limitations
in the range of quantities.)
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This approachworks for affine-connectedmanifolds generally; nomet-
ric is required. Similarly, the suggestion for how to treat an analog of
particular covariant tensor fields on the manifold doesn’t make use of a
metric. (Of course it isn’t an exact analog, because though a represen-
tation theorem for tensor fields will assign a real number to sufficiently
small geodesic segments emanating from a point, it will do so only in a
way that depends on a scale for the tensor-like quantity that’s in question.)
In manifolds that do have a metric, the metric is treated (as in platonistic
theories) as just another covariant tensor field (with a requirement that
it be compatible with the affine connection, in the sense that the metric
applied to two geodesic segments emanating from a point has the same
value as the metric applied to the result of transporting those vectors
along a geodesic to a different point).

I’m not sure whether it’s possible, without relying on a metric, to give
an attractive extension of this treatment to tensors that are contravariant
in some indices; but I think any such extension would be more complex.
In the footnote I didn’t pursue this, because the concern there was with
general relativity, where there is a metric; it allows us to translate between
contravariant and covariant indices.F

F Thanks toCianDorr,MarkoMalink, Chris Scambler, Trevor Teitel, andDanWaxman
for helpful comments on an earlier draft of this Preface.
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I include, for historical interest, a letter fromW.V.Quine, giving his initial
reaction to the book (adjusted, no doubt, by politeness to the author who
had sent him an unsolicited free copy).

I should add that his quasi-positive reaction didn’t seem to last: to
my knowledge he never in print indicated that the book made even the
slightest dent in his confidence in platonism.
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Preface to First Edition

This monograph represents what I believe to be a new approach to the
philosophy of mathematics. Most of the literature in the philosophy of
mathematics takes the following three questions as central:

(a) Howmuch of standard mathematics is true? For example, are con-
clusions arrived at using impredicative set theory true?

(b) What entities do we have to postulate to account for the truth of
(this part of) mathematics?

(c) What sort of account can we give of our knowledge of these truths?

A fourth question is also sometimes discussed, though usually quite
cursorily:

(d) What sort of account is possible of how mathematics is applied to
the physical world?

Now, my view is that question (d) is the really fundamental one. And
by focussing on the question of application, I was led to a surprising
result: that to explain even very complex applications of mathematics to
the physical world (for instance, the use of differential equations in the
axiomatization of physics) it is not necessary to assume that the mathe-
matics that is applied is true, it is necessary to assume little more than that
mathematics is consistent. This conclusion is not based on any general
instrumentalist stratagem: rather, it is based on a very special feature of
mathematics that other disciplines do not share.

The fact that the application of mathematics doesn’t require that the
mathematics that is applied be true has important implications for the
philosophy of mathematics. For what good argument is there for regard-
ing standard mathematics as a body of truths? The fact that standard
mathematics is logically derived from an apparently consistent body of
axioms isn’t enough; the question is, why regard the axioms as truths,
rather than as fictions that for a variety of reasons mathematicians have
become interested in? The only non-question-begging arguments I have
ever heard for the view that mathematics is a body of truths all rest
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ultimately on the applicability of mathematics to the physical world; so
if applicability to the physical world isn’t a good argument either, then
there is no reason to regard any part of mathematics as true. This is not
of course to say that there is something wrong with mathematics; it’s
simply to say that mathematics isn’t the sort of thing that can be appro-
priately evaluated in terms of truth and falsehood. Questions (a)–(c) are
thus trivially answered: no part of mathematics is true (but you can use
impredicative reasoning and other controversial reasoning all you like in
mathematics as long as you’re pretty sure it’s consistent); consequently
no entities have to be postulated to account for mathematical truth, and
the problem of accounting for the knowledge of mathematical truths
vanishes. (Of course, the problem of accounting for our knowledge of
what mathematical conclusions follow fromwhat mathematical premises
still remains. But that is logical knowledge, not mathematical knowledge:
it isn’t knowledge of any special realm of mathematical entities.)∗

Thehardest part of showing that the application ofmathematics doesn’t
require that the mathematics that is applied be true is to show that
mathematical entities are theoretically dispensable in a way that theoret-
ical entities in science are not: that is, that one can always re-axiomatize
scientific theories so that there is no reference to or quantification over
mathematical entities in the reaxiomatization (and one can do this in
such a way that the resulting axiomatization is fairly simple and attrac-
tive). To show convincingly that such nominalistic reaxiomatizations of
serious physical theories are possible requires a rather detailed technical
argument. In this monograph I have in fact given such an argument
(in the case of one physical theory I judge to be fairly typical). But
I have tried to make the main ideas of my approach accessible to those
without the background or the patience to follow all of the technical
details.

The motivation for this project did not come solely from considera-
tions about the philosophy of mathematics or about ontology: certain
ideas in the philosophy of science (such as the desirability of what I call
‘intrinsic explanations’ and the desirability of eliminating certain sorts

∗ In these first two paragraphs I have used the term ‘mathematics’ a bit more narrowly
than in the text: in these paragraphs, only sentences containing terms referring tomathemat-
ical entities or variables ranging over mathematical entities count as part of mathematics.
(Compare note  of the text.)
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of ‘arbitrariness’ or ‘conventional choice’ from our ultimate formulation
of theories) also played a key role. These ideas from the philosophy of
science are touched on in Chapter ; they yield support, independent of
ontological considerations, for the account of the application of math-
ematics being suggested here. I also discuss (mostly in Chapter  but
to some extent also in Chapter ) some issues about logic and about
ontological commitment: in particular, the relativity of ontological com-
mitment to the underlying logic, i.e. the fact that one can often reduce
one’s ontological commitments by expanding one’s logic. This is a fact
about ontological commitment that has not been sufficiently discussed
by philosophers writing on ontological questions, and one of the issues I
address myself to in the final chapter is under what circumstances if any
it is reasonable to expand one’s logic in order to reduce one’s ontology.

I would like to thank the University of Southern California, the
National Science Foundation and the Guggenheim Foundation for their
generous support that provided me with the time needed for research
and writing of this project. At a less material level, I would like to thank
John Burgess and especially ScottWeinstein for helpingme to get straight
the relation between the consistency of mathematics and its conserva-
tiveness (cf. the Appendix to Chapter ); and to Burgess, Tony Martin,
and Yiannis Moschovakis for helpfully answering various questions that
arose when I attempted to prove a false claim about the system N that
is discussed in Chapter . Several readers of an earlier draft made helpful
comments that enabled me to clarify and improve my argument: among
them I would like especially to mention Solomon Feferman, Michael
Friedman, David Hills, Janet Levin, Colin McGinn, and Charles Parsons.
Finally, I would like to express a general indebtedness to Hilary Putnam:
in philosophy of mathematics as in much else, his work has deeply influ-
enced the way I think about things, even where (as here) the conclusions
we have reached are very different.

Here is a chapter-by-chapter description of what follows:

• Preliminary Remarks. (a) States the doctrine to be advocated (and
to be called ‘nominalism’), namely the view that there are no math-
ematical entities; (b) sketches the most serious objection that has
been made to this doctrine: roughly, that mathematical entities are
indispensable to practical affairs and to science; (c) describes the
strategy most nominalists have adopted for trying to get around this
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objection; and (d) describes an alternative strategy for overcoming
the objection, which is the strategy to be employed in this book.

•  Why the Utility of Mathematical Entities is Unlike the Utility of
Theoretical Entities. In this chapter I argue that it is legitimate to
use mathematics to draw nominalistic conclusions (i.e. conclusions
statable without reference to mathematical entities) from nominal-
istic premises, without assuming that the mathematics used in this
way is true, but assuming little more than that it is consistent. More
precisely, what one assumes aboutmathematics (and the relationship
of this assumption to the assumption that mathematics is consistent
is discussed in the Appendix to the chapter) is that mathematics is
conservative: any inference from nominalistic premises to a nomi-
nalistic conclusion that can be made with the help of mathematics
could be made (usually more long-windedly) without it. This is a
fundamental difference between the use ofmathematical entities and
the use of the theoretical entities of science: no such conservativeness
property holds for the latter.

The utility of theoretical entities in science is due solely to their
theoretical indispensability: without theoretical entities, no (suffi-
ciently attractive) theory is possible. At first blush, it appears that
mathematical entities are theoretically indispensable too, for they
seem to be needed in axiomatizing science; it appears, then, that the
conservativeness of mathematics accounts for only part of its utility.
In later chapters, however, I argue that mathematical entities are not
theoretically indispensable, and that the entire utility ofmathematics
can be accounted for by its conservativeness, without assuming its
truth.

•  First Illustration of Why Mathematical Entities are Useful: Arith-
metic. This chapter and the next provide elementary illustrations
of the kind of application of mathematics that can be accounted for
by the conservativeness of mathematics alone, without invoking the
assumption that the mathematics being applied is true. This chapter
concerns the application of the arithmetic of natural numbers.

•  Second Illustration of Why Mathematical Entities are Useful:
Geometry and Distance. Here I show that the use of real numbers
in geometry can be accounted for by the conservativeness of math-
ematics, without assuming the truth of the theory of real numbers.
This illustration of the ideas of Chapter  will play a major role in
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ensuing chapters. To give a bit more detail: I discuss Hilbert’s axiom-
atization of Euclidean geometry, which, since it doesn’t involve real
numbers, shows that real numbers are theoretically dispensable in
geometry; then I discuss two theorems that Hilbert proved about his
axiomatization of geometry, namely his representation and unique-
ness theorems, and show how the representation theorem explains
the utility of real numbers in geometric reasoning (without requiring
that the theory of real numbers be true) while the uniqueness theo-
rem establishes that the axiomatization without numbers has certain
quite desirable properties.

•  Nominalism and the Structure of Physical Space. Here it is
argued that the Hilbert theory of the previous chapter not only
dispenses with real numbers, but is (or can be made with a little
rewriting) a genuinely nominalistic theory of the structure of physi-
cal space. Arguing this involves a brief discussion of some questions
in the philosophy of space and time, and an issue in the philosophy
of logic that arises again in Chapter .

•  My Strategy for Nominalizing Physics, and its Advantages. Here
I suggest that the Hilbert theory of geometry, and its representation
and uniqueness theorems, provide a general model of how physical
theories are to be nominalized. Several features of Hilbert’s version
of geometry are cited; it is argued that these features are highly
advantageous ones and a decision is made to require of an adequate
nominalization of physics that it have analogous advantages. It is
also pointed out that the other nominalistic approaches which were
contrasted to my approach in the Preliminary Remarks do not lead
to physical theories with these advantageous features.

•  A Nominalistic Treatment of Newtonian Space-Time. This chap-
ter extends the Hilbert treatment of space to space-time, empha-
sizing the advantages of the resulting theory over more usual
approaches to space-time. (The key advantages of my approach,
aside from its being nominalistic, are that it is more thoroughly
‘intrinsic’ and (closely related) that it avoids use of a certain kind of
‘arbitrary choice’ of scale, rest frame, coordinate system, etc.) This is
the first of the chapters that have a fairly technical subject matter, but
it is written in an informal enough way so that most readers should
be able to get the main idea of the approach I am following and its
advantages.
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•  A Nominalistic Treatment of Quantities, and a Preview of a
Nominalistic Treatment of the Laws involving them. Here I dis-
cuss very briefly how quantities like temperature are to be dealt with
nominalistically. I also outline the strategy that is to be used in the
next chapter for dealing nominalisticallv with laws involving these
quantities, such as differential equations. This chapter, like the last,
deals with technical material, but is informal enough so that most
readers should get the general idea.

•  Newtonian Gravitational Theory Nominalized. This chapter is
quite technical: it is a detailed sketch of how one particular theory
is to be formulated nominalistically, and how the adequacy of this
formulation is to be proved. I suspect that many readers will not be
interested in going through the details, but I recommend that they
read at least section A: this gives a relatively simple illustration of the
same strategy of nominalization that is used in more complicated
contexts later on in the chapter.

•  Logic and Ontology. There are two respects in which the treat-
ment of physics in the foregoing chapters goes beyond first-order
logic, and this final chapter discusses what morals are to be drawn
from this. It is argued first that this extra logic does not violate
nominalism; second, that use of this extra logic is preferable to use
of set theoretic surrogates for the logic (which would violate nom-
inalism); third, that use of this extra logic is probably dispensable
anyway.The first two of these points involve issues about ontological
commitment that are of interest independently of the theory being
presented in this monograph.
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Nominalism is the doctrine that there are no abstract entities. The term
‘abstract entity’ may not be entirely clear, but one thing that does seem
clear is that such alleged entities as numbers, functions, and sets are
abstract—that is, they would be abstract if they existed. In defending
nominalism, therefore, I am denying that numbers, functions, sets, or any
similar entities exist.

Since I deny that numbers, functions, sets, etc. exist, I deny that it is
legitimate to use terms that purport to refer to such entities, or variables
that purport to range over such entities, in our ultimate account of what
the world is really like.

This appears to raise a problem: for our ultimate account of what the
world is really like must surely include a physical theory; and in devel-
oping physical theories one needs to use mathematics; and mathematics
is full of such references to and quantifications over numbers, functions,
sets, and the like. It would appear then that nominalism is not a position
that can reasonably be maintained.

There are a number of prima facie possible ways to try to resolve this
problem. The way that has proved most popular among nominalistically
inclined philosophers is to try to reinterpret mathematics—reinterpret it
so that its terms and quantifiers don’t make reference to abstract entities
(numbers, functions, etc.) but only to entities of other sorts, say physical
objects, or linguistic expressions, or mental constructions.

My approach is different: I do not propose to reinterpret any part of
classical mathematics; instead, I propose to show that the mathematics
needed for application to the physical world does not include any-
thing which even prima facie contains references to (or quantifications
over) abstract entities like numbers, functions, or sets. Towards that
part of mathematics which does contain references to (or quantifications
over) abstract entities—and this includes virtually all of conventional
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mathematics—I adopt a fictionalist attitude: that is, I see no reason to
regard this part of mathematics as true.

Most recent philosophers have been hostile to fictionalist interpreta-
tions of mathematics, and for good reason. If one just advocates fiction-
alism about a portion of mathematics, without showing how that part
of mathematics is dispensable in applications, then one is engaging in
intellectual doublethink: one is merely taking back in one’s philosoph-
ical moments what one asserts in doing science, without proposing an
alternative formulation of science that accords with one’s philosophy.
This (Quinean) objection to fictionalism about mathematics can only be
undercut by showing that there is an alternative formulation of science
that does not require the use of any part of mathematics that refers to
or quantifies over abstract entities. I believe that such a formulation is
possible; consequently, without intellectual doublethink, I can deny that
there are abstract entities.

The task of showing that one can reformulate all of science so that it
does not refer to or quantify over abstract entities is obviously a very
large one; my aim in this monograph is only to illustrate what I believe
to be a new strategy toward realizing this goal, and to make both the goal
and the strategy look attractive and promising. My attempt to make the
strategy look promising ultimately takes the following form: I show, in
Chapter , how in the context of certain physical theories (field theories
in flat space-time) one can develop an analogue of the calculus of sev-
eral real variables that does not quantify over real numbers or functions
or any such thing. Although I do not develop this analogue of calculus
completely (e.g. I do not discuss integration), I do sketch enough of it to
show how a nominalistic version of the Newtonian theory of gravitation
could be given. This nominalistic version of gravitational theory has all
the nominalistically statable consequences of the usual platonistic (i.e.
non-nominalistical) versions of the theory. Moreover, I believe that the
nominalistic reformulation is mathematically attractive, and that there

 The “part of mathematics that doesn’t contain references to abstract entities” is really
just applied logic: it is the systematic deduction of consequences from axiom systems (axiom
systems similar in many respects to those used in platonistic mathematics, but containing
references only to physical entities). Very little of ordinary mathematics consists merely of
the systematic deduction of consequences from such axiom systems: my claim, however, is
that ordinarymathematics can be replaced in application by a newmathematics which does
consist only of this.

 I believe the approach is generalizable to curved space-time, but haven’t thought
through all the details.
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are considerations other than ontological ones that favour it over the usual
platonistic formulations.

I must admit that the formulation of gravitational theory which I arrive
at will not satisfy every nominalist: I use several devices which some
nominalists would question. In particular, nominalists with any finitist
or operationalist tendencies will not like the way I formulate physical
theories, for my formulations will be no more finitist or operationalist
than the usual platonistic formulations of these theories are. To illustrate
the distinction I have in mind between nominalist concerns on the
one hand and finitist or operationalist concerns on the other, consider
an example. Someone might object to asserting that between any two
points of a light ray (or an electron, if electrons have non-zero diameter)
there is a third point, on the ground that this commits one to infinitely
many points on the light ray (or the electron), or on the ground that it
is not in any very direct sense checkable. But these grounds for objecting
to the assertion are not nominalistic grounds as I am using the term
‘nominalist’, for they arise not from the nature of the postulated entities
(viz. the parts of the light ray or of the electron) but from the structural
assumptions involving them (viz. that there are infinitely many of them
in a finite stretch). I am not very impressed with finitist or operationalist
worries, and consequently I make no apologies for making some fairly
strong structural assumptions about the basic entities of gravitational
physics in what follows. It is not that I have no sympathy whatever for the
program of reducing the structural assumptions made about the entities
postulated in physical theories—if this can be done, it is interesting. But
as far as I aware, it has not been successfully done even in platonistic
formulations of physics: that is, no platonistic physics is available which
uses a mathematical system less rich than the real numbers to represent
the positions of the parts of a light ray or of an electron. Consequently,
although I will make it a point not to make any structural assumptions
about entities beyond the structural assumptions made in the usual
platonistic theories about these entities, I will also feel no compulsion
to reduce my structural assumptions below the platonistic level. The
reduction of structural assumptions is simply not my concern.

 As it happens, a certain reduction of structural assumptions will fall out ‘by accident’,
on one of the two nominalistic formulations of gravitational theory I will give (the one
I will call N in Chapter ). Moreover, both nominalistic formulations, but especially N,
seem especially well suited for a study of the effects of further weakenings of the structural
assumptions.
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Although I feel no apologies are in order for my use of structural
assumptions that would offend the finitist or operationalist, there is
another device I have used which I do feel slightly apologetic about. But
I try to argue in the final chapter that it is less objectionable than it might
at first seem, and that it is probably eliminable anyway.

I would like to make clear at the outset that nothing in this mono-
graph purports to be a positive argument for nominalism. My goal
rather is to try to counter the most compelling arguments that have
been offered against the nominalist position. It seems to me that the
only non-question-begging arguments against the sort of nominalism
sketched here (that is, the only non-question-begging arguments for the
view that mathematics consists of truths) are all based on the applicability
of mathematics to the physical world. Notice that I do not say that the
only way to argue that a given mathematical axiom is true is on the
basis of its application to the physical world: that would be incorrect.
For instance, if one grants that the elementary axioms of set theory are
true, one can with at least some plausibility argue for the truth of the
axiom of inaccessible cardinals on the grounds that this axiom accords
with the general conception of sets that underlies the more elementary
axioms. More generally, if we assume that the concept of truth has non-
trivial application in at least one part of pure mathematics (or to be more
precise, if we assume that there is at least one body of pure mathematical
assertions that includes existential claims and that is true), then we are
assuming that there are mathematical entities. From this we can conclude
that there must be some body of facts about these entities, and that not all
facts about these entities are likely to be relevant to known applications
to the physical world; it is then plausible to argue that considerations
other than application to the physical world, for example, considerations
of simplicity and coherence within mathematics, are grounds for accept-
ing some proposed mathematical axioms as true and rejecting others
as false. This is all fine; but it is of relevance only after one grants the
assumption that for some part of mathematics the concept of truth has
non-trivial application, and this is an assumption that the nominalist will
not grant.

There can be no doubt that the axioms of, say, real numbers are
important, and that they are non-arbitrary; and an explanation of their
non-arbitrariness, based on their applicability to the physical world but
compatible with nominalism, will be given in Chapters –. The present
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point is simply that from the importance and non-arbitrariness of these
axioms, it doesn’t obviously follow that these axioms are true, i.e. it doesn’t
obviously follow that there are mathematical entities that these axioms
correctly describe. The existence of such entities may in the end be a rea-
sonable conclusion to draw from the importance and non-arbitrariness
of the axioms, but this needs an argument. When the debate is pushed
to this level, I believe it becomes clear that there is one and only one
serious argument for the existence of mathematical entities, and that is
the Quinean argument that we need to postulate such entities in order to
carry out ordinary inferences about the physical world and in order to do
science. Consequently it seems tome that if I can undercut this argument
for the existence of mathematical entities, then the position that there are
such entities will look like unjustifiable dogma.

The fact that what I am trying to do is not to provide a positive
argument for nominalism but to undercut the only available argument
for platonism must be borne in mind in considering an important
methodological issue. Although in this monograph I will be espousing
nominalism, I am going to be using platonistic methods of argument:
I will for instance be proving platonistically, not nominalistically, that a
certain nominalistic theory of gravitation has all of the nominalistically-
statable consequences that the usual platonistic formulation of the
Newtonian theory of gravitation has. It might be thought that there is
something wrong about using platonistic methods of proof in an argu-
ment for nominalism. But there is really little difficulty here: if I am
successful in proving platonistically that abstract entities are not needed
for ordinary inferences about the physical world or for science, then
anyone who wants to argue for platonism will be unable to rely on the
Quinean argument that the existence of abstract entities is an indispens-
able assumption. The monograph shows that any such argument would
be inconsistent with the platonistic position that is being argued for. The
would-be platonist, then, will be forced into either accepting abstract
objects without argument or else relying on other arguments for platon-
ism, arguments which in my opinion are quite unpersuasive. The upshot

 The most thorough presentation of the Quinean argument is actually not by Quine
but by Hilary Putnam (Putnam , especially chs. –). Some of the arguments I do not
take seriously (e.g. the argument that we need to postulate mathematical entities in order to
account for mathematical intuitions) are well treated in ch.  of Chihara .
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then (if I am right in my negative appraisal of alternative arguments for
platonism) is that platonism is left in an unstable position: it entails its
own unjustifiability.

It may be of course that my negative appraisal of alternative arguments
for platonism is wrong. Interestingly enough, the platonist who bases his
case for platonismon some such alternative argumentmay even findwhat
I have to say welcome; for independently of nominalistic considerations,
I believe that what I do here gives an attractive account of how mathe-
matics is applied to the physical world. This is I think in sharp contrast
to many other nominalistic doctrines, e.g. doctrines which reinterpret
mathematical statements as statements about linguistic entities or about
mental constructions. Such nominalistic doctrines do nothing toward
illuminating the way in which mathematics is applied to the physical
world. (I will return to this point in Chapter .)

 Actually, I do not think that a platonistic proof of the adequacy of our theories serves
merely as a reductio: I think that a nominalist too should be convinced by a platonistic proof
about the deductive powers of a given nominalistic theory. But a defense of this claimwould
be a long story. (Some much too brief remarks on this matter are contained in note  in
the next chapter.) In any case, the nominalist need not ultimately rely on such platonistic
proofs of the adequacy of his systems: in principle at least, he and his fellow nominalists
could simply spin out deductions from nominalistic axiom systems like the ones suggested
later in the monograph. In this sense, the reliance on platonistic proofs could be regarded
as a temporary expedient.
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Why the Utility
of Mathematical Entities
is Unlike the Utility
of Theoretical Entities

No one can sensibly deny that the invocation of mathematical entities
in some contexts is useful. The question arises as to whether the utility
of mathematical existence-assertions gives us any grounds for believing
that such existence-assertions are true. I claim that in answering this
question one has to distinguish two different ways in whichmathematical
existence-assertions might be useful; I grant that if such assertions are
useful in a certain respect, then that would indeed be evidence that they
are true; but the most obvious respect in which mathematical existence
assertions are useful is, I claim, quite a different one, and I will argue that
the utility of such assertions in this respect gives no grounds whatever for
believing the assertions to be true.

To bemore explicit, I will argue that the utility of mathematical entities
is structurally disanalogous to the utility of theoretical entities in physics.
The utility of theoretical entities lies in two facts:

(a) they play a role in powerful theories from which we can deduce a
wide range of phenomena; and

(b) no alternative theories are known or seem at all likely which
explain these phenomena without similar entities.

[The unsympathetic reader may dispute (b): if any body of sentences
counts as a ‘theory’ and any deduction from such a ‘theory’ counts as
an explanation, then there clearly are alternatives to the usual theories
of subatomic particles: e.g., take as your ‘theory’ the set T∗ of all the
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consequences of T that don’t contain reference to subatomic particles
(where T is one of the usual theories that does contain reference to sub-
atomic particles); or if you want a recursively axiomatized ‘theory’, let
T∗∗ be the Craigian reaxiomatization of the theory T∗ just described.
Since I don’t know any formal conditions to impose which would rule out
such bizarre trickery, let me simply say that by ‘theory’ I mean reasonably
attractive theory; ‘theories’ like T∗ and T∗∗ are obviously uninteresting,
since they do nothing whatever toward explaining the phenomena in
question in terms of a small number of basic principles.]

The upshot of (a) and (b) is that subatomic particles are theoretically
indispensable; and I believe that that is as good an argument for their
existence as we need. Now, later on in the monograph I will argue that
mathematical entities are not theoretically indispensable: although they
do play a role in the powerful theories of modern physics, we can give
attractive reformulations of such theories in which mathematical entities
play no role. If this is right, then we can safely adhere to a fictionalist view
of mathematics, for adhering to such a view will not involve depriving
ourselves of a theory that explains physical phenomena and which we
can regard as literally true.

But the task of arguing for the theoretical dispensability of mathemat-
ical entities is a matter for later. What I want to do now is to give an
account, consistent with the theoretical dispensability of mathematical
entities, of why it is useful to make mathematical existence-assertions in
certain contexts.

The explanation of why mathematical entities are useful involves a fea-
ture of mathematics that is not shared by physical theories that postulate
unobservables. To put it a bit vaguely for the moment: if you take any
body of nominalistically stated assertions N, and supplement it with a
mathematical theory S, you don’t get any nominalistically stated con-
clusions that you wouldn’t get from N alone. The analog for theories
postulating subatomic particles is of course not true: if T is a theory that
involves subatomic particles and is at all interesting, then there are going
to be lots of cases of bodies P of wholly macroscopic assertions which in
conjunction with T yield macroscopic conclusions that they don’t yield in
absence of T; if this were not so, theories about subatomic particles could
never be tested.

I’ll state these claims more precisely in a moment, but first I should
say that the claim about mathematics would be almost totally trivial if
mathematics consisted only of theories like number theory or pure set
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theory, i.e. set theory in which no allowance is made for sets with mem-
bers that are not themselves sets. But these theories are by themselves of
no interest from the point of view of applied mathematics, for there is no
way to apply them to the physical world.That is, there is no way in which
they are even prima facie helpful in enabling us to deduce nominalistically
statable consequences from nominalistically statable premises. In order
to be able to apply any postulated abstract entities to the physical world,
we need impure abstract entities, e.g. functions that map physical objects
into pure abstract entities. Such impure abstract entities serve as a bridge
between the pure abstract entities and the physical objects; without the
bridge, the pure objects would be idle. Consequently, if we regard func-
tions as sets of a certain sort, then the mathematical theories we should
be considering must include at least a minimal amount of impure set
theory: set theory that allows for the possibility of urelements, where an
urelement is a non-set which can be a member of sets. In fact, in order to
be sufficiently powerful for most purposes, the impure set theory must
differ from pure set theory not only in allowing for the possibility of
urelements, itmust also allow for non-mathematical vocabulary to appear
in the comprehension axioms (i.e. in the instances of the axiom schema
of separation or of replacement). So the ‘bridge laws’ must include laws
that involve the mathematical vocabulary and the physical vocabulary
together.

Something rather analogous is true of the theory of subatomic
particles. One can artificially formulate such a theory so that none of the
non-logical vocabulary that is applied to observable physical objects is
applied to the subatomic particles; in general it seems to me pointless
to formulate physical theories in this way, but to press the analogy with
the mathematical case as far as it will go, let us suppose it done. If it
is done, and if we suppose that T is a physical theory stated entirely
in this vocabulary, then of course, it will be the case that if we add T
to a bunch of macroscopic assertions P, we will be able to derive no
results about observables that weren’t derivable already. But that is for
a wholly uninteresting reason: it is because the theory T by itself is not
even prima facie helpful in deducing claims about observables from
other claims about observables. In order to make it even prima facie
helpful, we have to add ‘bridge laws’, laws which connect up the entities

 Count ‘=’ as logical.
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and/or the vocabulary of the (artificially formulated) physical theory
with observables and the properties by which we describe them. So far,
then, like the mathematical case.

But there is a fundamental difference between the two cases, and that
difference lies in the nature of the bridge laws. In the case of subatomic
particles, the theory T, interpreted now so as to include the bridge laws
(and perhaps also some assumptions about initial conditions), can be
applied to bodies of premises about observables in such a way as to yield
genuinely new claims about observables, claims that would not be deriv-
able without T. Whereas in the mathematical case the situation is very
different. Here, if we take amathematical theory that includes bridge laws
(i.e. includes assertions of the existence of functions fromphysical objects
into ‘pure’ abstract objects, including perhaps assertions obtained via a
comprehension principle that usesmathematical and physical vocabulary
in the same breath), then thatmathematics is applicable to theworld, i.e. it
is useful in enabling us to draw nominalistically statable conclusions from
nominalistically statable premises. But here, unlike in the case of physics,
the conclusions we arrive at by these means are not genuinely new, they are
already derivable in a more long-winded fashion from the premises, without
recourse to the mathematical entities.

This claim, unlike the one I will make later about the theoretical dis-
pensability of mathematical entities, is prettymuch of an incontrovertible
fact, but one very much worth emphasizing. So first let me state the point
more precisely than I have done.

A first stab at putting the point precisely would be to say that for any
mathematical theory S and any body of nominalistic assertions N, N + S
is a conservative extension of N. However, this formulation isn’t quite
right, and it is worth taking the trouble to put the point accurately. The
problem with this formulation is that since N is a nominalistic theory,
it may say things that rule out the existence of abstract entities, and so
N + S may well be inconsistent. But it is clear how to deal with this:
first, introduce a -place predicate ‘M(x)’, meaning intuitively ‘x is a
mathematical entity’; second, for any nominalistically stated assertion
A, let A∗ be the assertion that results by restricting each quantifier of A
with the formula ‘notM(xi)’ (for the appropriate variable ‘xi’); and third,

 That is, replace every quantification of form ‘∀xi(. . .)’ by ‘∀xi(if not M(xi) then . . .)’,
and every quantification of form ‘∃xi(. . .)’ by ‘∃xi(not M(xi) and . . .)’.
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for any nominalistically stated body of assertions N, let N∗ consist of all
assertionsA∗ forA inN.N∗ is then an ‘agnostic’ version ofN: for instance,
if N says that all objects obey Newton’s laws, then N∗ says that all non-
mathematical objects obey Newton’s laws, but it allows for the possibility
that there are mathematical objects that don’t. (Actually N∗ is in one
respect too agnostic: in ordinary logic we assume for convenience that
there is at least one thing in the universe, and in the context of a theory
like N this means that there is at least one non-mathematical thing. So it
is really N∗+ ‘∃x¬M(x)’ that gives the agnostic content of N.)

Whether a similar point needs to bemade for ourmathematical theory
S depends on what we take S to be. If S is simply set theory allowing for
urelements, no restriction on the variables is needed, since the theory
already purports to be about non-sets as well as sets: we merely need to
connect up the notion of set that occurs in it with our predicate ‘M’, by
adding the axiom ‘∀x(Set(x) → M(x))’. If in addition the mathematical
theory includes portions like number theory, considered as independent
disciplines unreduced to set theory, then we must restrict all variables in
themby a newpredicate ‘Number’, and add the axioms ‘∀x(Number(x) →
M(x))’ and ‘∃x(Number(x))’. Presumably, however, everyone agrees that
mathematical theories really ought to be written in this way (that is,
presumably no one believes that all entities are mathematical), so I will
not introduce a special notation for the modified version of S, I’ll assume
that S is written in this form from the start. (The analogous assumption
for N would be inappropriate: the nominalist wants to assert not N∗, but
the stronger claim N.)

Having dealt with these tedious points, I can now state accurately the
claim made at the end of the next to last paragraph.

Principle C (for ‘conservative’): Let A be any nominalistically
statable assertion, and N any body of such assertions; and

 The formal content of saying that N is ‘nominalistically statable’ is simply that it not
employ the special mathematical vocabulary of the mathematical theory to be introduced,
including ‘mathematical’. This is all we need to build into ‘nominalistically statable’ in order
for Principle C to be true. For Principle C to be of interest, we must suppose in addition that
the intended ontology of N does not include any entities in the intended extension of the
predicate ‘M’ of S; for if this condition were violated, then N∗ + S would not correspond to
the ‘intended’ way of combining N and S.
[This footnote is changed from the st edition. There, instead of the first sentence above,

I incorrectly wrote: “The formal content of saying that N is ‘nominalistically statable’ is
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let S be any mathematical theory. Then A∗ isn’t a consequence of
N∗ + S + ‘∃x¬M(x)’ unless A is a consequence of N.

Why should we believe this principle? Well, it follows from a slightly
stronger principle that is perhaps a bit more obvious:

Principle C′: Let A be any nominalistically statable assertion, and N
any body of such assertions. Then A∗ isn’t a consequence of N∗ + S
unless it is a consequence of N∗ alone.

This in turn is equivalent (assuming the underlying logic to be compact)
to something still more obvious-sounding:

Principle C′′: Let A be any nominalistically statable assertion. Then
A∗ isn’t a consequence of S unless it is logically true.

Now I take it to be perfectly obvious that our mathematical theories do
satisfy Principle C′′. After all, these theories are commonly regarded as
being ‘true in all possible worlds’ and as ‘a priori true’; and though these
characterizations of mathematics may be contested, it is hard to see how
any knowledgeable person could regard our mathematical theories in
these ways if those theories implied results about concrete entities alone
that were not logically true. The same argument can be used to directly
motivate Principle C′, thereby obviating the need of the compactness
assumption: if mathematics together with a body N∗ of nominalistic
assertions implied an assertion A∗ which wasn’t a logical consequence
of N∗ alone, then the truth of the mathematical theory would hinge on
the logically consistent body of assertions N∗ + ¬A∗ not being true. But
it would seem that it must be possible, and/or not a priori false, that such
a consistent body of assertions about concrete objects alone is true; if so,

simply that it not overlap in non-logical vocabulary with the mathematical theory to be
introduced. (Recall that ‘=’ counts as logical.)” This obviously conflicts with the remarks
above on the need of impure mathematics. For discussion, see the end of subsection . of
the new Preface.]

 Proof: Suppose N∗ + S + ‘∃x¬M(x)’ implies A∗ . Then N∗ + S implies A∗ ∨
∀x(¬M(x) → x �= x); that is, it implies B∗ where B is A ∨ ∀x(x �= x). Applying Principle
C′, we get that N∗ implies B∗, and consequently that N∗ + ‘∃x¬M(x)’ implies A∗. From this
it clearly follows that N implies A.
Principle C′ does not quite follow from Principle C, for a theory S could imply that there

are non-mathematical objects but not imply anything else about the non-mathematical
realm (in particular, not imply that there are at least two mathematical objects—the latter
would violate Principle C as well as Principle C′).



OUP CORRECTED PROOF – FINAL, //, SPi

mathematical entities and theoretical entities 

then the failure of Principle C would show that mathematics couldn’t be
‘true in all possible worlds’ and/or ‘a priori true’. The fact that so many
people think it does have these characteristics seems like some evidence
that it does indeed satisfy Principle C′ and therefore Principle C.

This argument isn’t conclusive: standard mathematics might turn out
not to be conservative (i.e. not to satisfy Principle C), for itmight conceiv-
ably turn out to be inconsistent, and if it is inconsistent it certainly isn’t
conservative. We would however regard a proof that standard mathemat-
ics was inconsistent as extremely surprising, and as showing that standard
mathematics needed revision. Equally, it would be extremely surprising if
it were to be discovered that standard mathematics implied that there are
at least  non-mathematical objects in the universe, or that the Paris
Communewas defeated; andwere such a discovery to bemade, all but the
most unregenerate rationalist would take this as showing that standard
mathematics needed revision. Good mathematics is conservative; a dis-
covery that acceptedmathematics isn’t conservative would be a discovery
that it isn’t good.

Indeed, as some of the mathematical arguments in the Appendix to
this chapter show, the gap between the claim of consistency and the full
claim of conservativeness is, in the case of mathematics, a very tiny one.
In fact, for pure set theory, or for set theory that allows for impure sets
but doesn’t allow empirical vocabulary to appear in the comprehension
axioms, the conservativeness of the theory follows from its consistency
alone. For full set theory this is not quite true; but a large part of the
content of the conservativeness claim for full set theory (probably the only
part of the content that is important in application) follows from the
consistency of set theory alone (and still more of the content follows from
slightly stronger assumptions, like that full set theory is ω-consistent).
These claims are demonstrated in the Appendix to this chapter. In any
case, I think that the two previous paragraphs show that the same sort
of quasi-inductive grounds we have for believing in the consistency of
mathematics extend to its conservativeness as well. As we saw earlier, this
means that there is a marked disanalogy between mathematical theories
and physical theories about unobservable entities: physical theories about
unobservables are certainly not conservative, they give rise to genuinely
new conclusions about observables.

What the facts about mathematics I have been emphasizing here show
is that even someone who doesn’t believe in mathematical entities is free
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to use mathematical existence-assertions in a certain limited context: he
can use them freely in deducing nominalistically stated consequences
from nominalistically stated premises. And he can do this not because
he thinks those intervening premises are true, but because he knows that
they preserve truth among nominalistically stated claims.

 In what sense does he know this? At the very least, he knows it in the sense that
a platonist mathematician who proves a result in recursive function theory by means of
Church’s thesis knows that he could construct a proof that didn’t invoke Church’s thesis.The
platonistmathematician hasn’t proved using the basic forms of argument that he accepts that
such a proof is possible, for he hasn’t proved Church’s thesis. (Nor can he even state Church’s
thesis except by vague terms like ‘intuitively computable’.) Still, there is a perfectly good
sense in which our platonist mathematician does know that a proof without Church’s thesis
is possible—after all, he could probably come up with Turing machine programs at each
point where Church’s thesis was invoked, if given sufficient incentive to do so. In precisely
the same sense, the nominalist knows that for any platonist proof of a nominalistically
stated conclusion from nominalistically stated premises there is a nominalistic proof of the
same thing.
Just what this sense of ‘know’ is (or, just what kind of knowledge is involved) is a difficult

matter: it doesn’t seem to me quite right to call it ‘inductive’ knowledge. But however this
may be, it is a kind of knowledge (or justification) whose strength can be increased by
inductive considerations: in the recursive function case, by knowledge that in the past one
had been able to transform proofs involving the imprecise notion of ‘intuitively computable’
to proofs not involving it when one has tried (or by knowledge that others have been able to
effect such transformations, and that one’s own judgements of intuitive computability tend
to coincide with theirs). In the conservativeness case, the kind of inductive considerations
that are relevant are the knowledge that in the past no one has found counterexamples to
conservativeness, and also the knowledge that inmany actual caseswhere platonistic devices
are used in proofs of nominalistic conclusions fromnominalistic premises (such as the cases
discussed in Chapters  and ), these devices are eliminable in what seems to be a more or
less systematic way.
These remarks suggest that the nominalistic position concerning the use of platonistic

proofs is about comparable to the platonist’s position concerning proofs that use Church’s
thesis. Actually I think that the nominalist’s position is in one respect even better, for
he can rely on something that the platonistic recursion theorist has no analog of: viz.,
the mathematical arguments for conservativeness given in the Appendix. Of course, these
arguments don’t raise the claim that mathematics is conservative to complete certainty, for
two reasons. One reason is that something at least as strong as the consistency of set theory
is assumed in them, and no one (platonist or nominalist) can be completely sure of that.The
other reason is that these proofs (at least the first, and both if one is sufficiently strict about
what counts as nominalist) are platonistic, and so some story has to be told about how the
nominalist is justified in appealing to them outside the context of a reductio. I think some
such story can be told, but it would be a long one. (An essential idea of the story would be
that we use conservativeness to argue for conservativeness: we’ve seen that the nominalist
has various initial quasi-inductive arguments which support the conclusion that it is safe to
use mathematics in certain contexts; if he then using mathematics in one of those contexts
can prove that it is safe to use mathematics in those contexts, this can raise the support of
the initial conclusion quite substantially.)
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This point is not of course intended to license the use of mathematical
existence assertions in axiom systems for the particular sciences: such a
use of mathematics remains, for the nominalist, illegitimate. (Or more
accurately, a nominalist should treat such a use of mathematics as a
temporary expedient that we indulge in when we don’t know how to
axiomatize the science properly, and that we ought to try to eliminate.)
The point I am making, however, does have the consequence that once
such a nominalistic axiom system is available, the nominalist is free to
use any mathematics he likes for deducing consequences, as long as the
mathematics he uses satisfies Principle C.

So if we ignore for themoment the role ofmathematics in axiomatizing
the sciences, then it looks as if the satisfaction of Principle C is the really
essential property of mathematical theories. The fact that mathematical
theories have this property is doubtless one motivation for the platonist’s
assertion that such theories are ‘true in all possible worlds’. It does not
appear tome, however, that the satisfaction of Principle C provides reason
for regarding a theory as true at all (even in the actual world). Certainly
such speculations, typical of extremeplatonism, as to for instancewhether
the continuumhypothesis is ‘really true’, seem to lose their point once one
recognizes conservativeness as the essential requirement ofmathematical
theories: for the usual Gödel and Cohen relative consistency proofs about
set theory plus the continuum hypothesis and set theory plus its denial
are easily modified into relative conservativeness proofs. In other words,
assuming that standard set theory satisfies Principle C, so does standard
set theory plus the continuum hypothesis and standard set theory plus
its denial; so it follows that either theory could be used without harm in
deducing consequences about concrete entities from nominalistic theories.

The same pointmade about the continuumhypothesis holds as well for
less recherché mathematical assertions. Even standard axioms of number
theory can be modified without endangering Principle C; similarly for
standard axioms of analysis. What makes the mathematical theories we

A platonist might be inclined to dismiss the sort of quasi-inductive knowledge discussed
in this note. But to do so would be to pay a high price: most of mathematics is known only
in this quasi-inductive sort of way. For most of it is proved by rather informal proofs; and
thoughwe all do in an important sense know that we could reconstruct such proofs formally
if forced to do so, still the principle that formal proofs are always possible when we have an
intuitively acceptable proof is, like Church’s thesis, a principle that we haven’t proved and
have no prospect of proving.
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accept better than these alternatives to them is not that they are true and
the modifications not true, but rather that they are more useful: they are
more of an aid to us in drawing consequences from those nominalistic
theories that we are interested in. If the world were different, we would
be interested in different nominalistic theories, and in that case some
of the alternatives to some of our favorite mathematical theories might
be of more use than the theories we now accept. Thus mathematics
is in a sense empirical, but only in the rather Pickwickian sense that is
an empirical question as to which mathematical theory is useful. It is
in an equally Pickwickian sense, however, that mathematical axioms are
a priori: they are not a priori true, for they are not true at all.

The view put forward here has considerable resemblance to the logical
positivist view of mathematics. One difference that is probably mostly
verbal is that the positivists usually described pure mathematics as ana-
lytically true, whereas I have described it as not true at all; this difference
is probably mostly verbal, given their construal of ‘analytic’ as ‘lacking
factual content’. A much more fundamental difference is that what wor-
ried the positivists about mathematics was not so much its postulation of
entities as its apparently non-empirical character, and this was a problem
not only for mathematics, but for logic as well. Hence they regarded logic
as analytic or contentless in the same sense thatmathematicswas. I believe
that this prevented them from giving any clear explanation of what the
‘contentlessness’ of mathematics (or of that part of mathematics that
quantifies over abstract entities) consists in. The idea of calling a logical
or mathematical assertion ‘contentless’ was supposed to be that a conclu-
sion arrived at by a logical or mathematical argument was in some sense
‘implicitly contained in’ the premises: in this way, the conclusion of such
an argument was ‘not genuinely new’. Unfortunately, no clear explanation
of the idea that the conclusion was ‘implicitly contained in’ the premises
was ever given, and I do not believe that any clear explanation is possible.

What I have tried to do in this chapter is to show how by giving up (or
saving for separate explication) the claim that logic (and that part of math
that doesn’t make reference to abstract entities) doesn’t yield genuinely
new conclusions, we can give a clear and precise sense to the idea that
mathematics doesn’t yield genuinely new conclusions: more precisely, we

 Wewill see, however, that the utility of number theory is less subject to such empirical
vicissitudes than are theories about say the real numbers.
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can show that the part of math that does make reference to mathematical
entities can be applied without yielding any genuinely new conclusions
about non-mathematical entities.

Appendix: On Conservativeness
It may be illuminating to give two mathematical arguments for the con-
servativeness of mathematics. The first argument proves, from a set-
theoretic perspective (more specifically, from the perspective of ordinary
set theory plus the axiom of inaccessible cardinals) that ordinary set
theory (and hence standard mathematics, which is reducible to ordinary
set theory) is definitely conservative. The second argument is a purely
proof-theoretic one: it establishes a slightly restricted form of the conser-
vativeness claim on the basis merely of the assumption that standard set
theory is consistent. This is illuminating in showing that the assumption
of the conservativeness of set theory is much ‘closer to’ the assumption
that set theory is consistent than to the assumption that it is true.

As a preliminary, let’s introduce some notation. Let ZF be standard
Zermelo-Fraenkel set theory (including the axiomof choice); let restricted
ZFU be ZF modified to allow for the existence of urelements, but not
allowing for any non-set-theoretic vocabulary to appear in the compre-
hension axioms (for definiteness, we may stipulate that it contains as an
axiom that there is a set of all non-sets). [Added in this edition: In accor-
dancewith the discussion in the text, we take ZFU to include the assertion
that ∀x(Set(x) → M(x)), leaving open whether some urelements (e.g.
numbers conceived as non-sets) are also mathematical.] If V is a class
of expressions, let ZFUV be restricted ZFU together with any instances of
the comprehension schemas in which the vocabulary in V as well as the
set-theoretic vocabulary is allowed to appear.What I earlier called ‘full set
theory’ isn’t really a single theory: rather, to ‘apply full set theory’ in the
context of a theory T is to apply ZFUV(T), where V(T) is the vocabulary of
T. Consequently, what we want to prove is that for any theory T, ZFUV(T)

applies conservatively to T. That is, we want to prove

(C) If T is any consistent body of assertions not containing ‘Math’ or
‘∈’ or ‘Set’, then ZFUV(T) + T∗ is also consistent.

[Changed from st edition: I’ve added “not containing ‘Math’
or ‘∈’ or ‘Set’ ”]
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(The T here is the N + ¬A of Principle C′.) This in fact will suffice for
proving the conservativeness of ZFUV(T) + S, for any standard math-
ematical theory S: for standard mathematical theories are embeddable
in ZF.

Somuch for preliminaries. How then do we prove that (C) holds?The
obvious set-theoretic line of proof is this:

Suppose T is consistent; then it has a model M of accessible cardinality,
say with domain D. Pick any entity e not in D. (e is to be thought of
as the empty set.) Let D be D ∪ {e}; Let D consist of all non-empty
subsets of D; let D consist of all non-empty subsets of D ∪ D; and
so on. LetDω beD ∪ D ∪ D ∪ . . . ; letDω+ consist of all non-empty
subsets of Dω; and so on. Continuing in this way until you reach an
inaccessible cardinal, you get—if certain initial precautions are taken
on the choice of D and e—a model of ZFUV(T) + T∗. (It is a model
of ZFUV(T) + T∗ rather than merely of ZFU + T∗ because at each
stage you’ve added every set of things available at previous stages.) So
ZFUV(T) + T∗ is consistent. Q.E.D.

Now let us turn to the proof-theoretic line of argument for conserva-
tiveness; the point of doing this is to make clear how narrow the gap is
between the consistency of mathematics and its conservativeness.

Indeed, in the case of mathematical theories which don’t allow for
impure abstract entities (e.g. number theory by itself, or ZF), consistency
implies conservativeness: this is an obvious consequence of the Robinson
joint consistency theorem. The same result holds also in the more

 D should either be taken to consist entirely of non-sets, in which case e should be
taken to be the empty set (or another non-set); or D should be taken to consist entirely of
sets of the same rank and e should be another set of that rank. Given any model of a theory,
there is no difficulty in getting another model whose domain meets these conditions.

 Suppose S + T∗ is inconsistent; the Robinson theorem says that there is a sentence
B in the language common to S and T∗ such that S � B and T∗ � ¬B. Clearly if S and T
are both consistent, then B can’t be either a logical truth or a contradiction. The language
common to S and T∗ consists, in the case of a ‘pure’ mathematical theory, of ‘M’ (the
predicate ‘mathematical’ discussed prior to the formulation of Principle C) and ‘=’, and
nothing else.The only statements in this language other than logical truths or contradictions
are statements saying how many mathematical objects there are and/or how many non-
mathematical objects there are. But since all statements in T∗ are explicitly restricted to
non-mathematical objects, T∗ can’t imply anything about how many mathematical objects
there are, and since the mathematical theory is assumed to be a pure one it can’t imply
anything about how many non-mathematical objects there are. So there can be no such B;
that is, the supposition that S andT are consistent but S +T∗ is inconsistent has been reduced
to absurdity.
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interesting case of restricted ZFU: here one needs, in addition to the
Robinson theorem, the well-known fact that if ZFU is consistent then
one can’t prove any result about how many non-sets there are. But in
the really interesting case of full ZFU, this whole line of argument via
the joint consistency theorem is blocked by the fact that the empirical
vocabulary that appears in the theory T also appears in set-theoretic
comprehension axioms.

The simplest thing to do in this case is to mimic proof-theoretically the
set-theoretic argument given three paragraphs back: doing so, it becomes
an argument that under certain conditions ZFUV(T) + T∗ is interpretable
within ZFUV(T), and in fact within ZF. (We don’t need the inaccessible
cardinal assumption anymore.) If the ‘certain conditions’ weremerely that
T is consistent, then we’d know that (C) holds as long as ZF is consistent,
and this is what we wanted. Unfortunately however we need the stronger
assumption that T is provably consistent within ZF; that is, the best we
can show is that if ZF is consistent, the following holds:

(C) If T is any body of assertions whose consistency is provable in ZF,
then ZFUV(T) + T∗ is consistent.

 A sketch of the proof of the last fact is given in Jech : , problem . Using this fact,
the proof that conservativeness implies consistency is just as in note .

 Proof: if ZF is consistent, and ZF� ‘T is consistent’ (where ‘T is consistent’ abbreviates
the formalization in ZF of the claim that T is syntactically consistent) then ZF + ‘T is
consistent’ is certainly consistent. Since the Gödel completeness theorem (together with
various more elementary facts) is provable in ZF, then so is ZF + ‘there is a model of T
in which all elements of the domain have the same rank and such that there is a set of that
rank that is not in the domain’. (Cf. note  for the motivation of this.) If T has n primitive
predicates, then amodel of T consists of a domain together with n items each corresponding
to one of the terms. Introducing new names b, c, . . . , cn for these things, and a name d for
the set of the right rank that isn’t in the domain of themodel, we see that ZF + ‘〈b, c, . . . , cn〉
is amodel of T’ + ‘allmembers of b have the same rank’ + ‘d has the same rank as allmembers
of b’ is also consistent. Call this theory ZFT .
By the principle of transfinite recursion, there is a formulaD(x) (in the language of ZFT)

such that
ZFT (in fact, ZF) � D(x) ↔ x ∈ b ∨ x = d ∨ (x �= ∅ ∧ ∀y(y ∈ x →D(y))).

If we translate statements of ZFUV(T) + T∗ into ZFT by usingD(x) to restrict all variables,
and translate ‘Set(x)’ as ‘x /∈ b’, ‘∈’ as ‘∈’, ‘∅’ as ‘d’, and ‘Ai(x, . . . , xk)’ where Ai is the ith
predicate of T as ‘〈x, . . . , xk〉 ∈ ci ’, then each of the translations of the axioms of ZFUV(T)

+ T∗ is a theorem of ZFT . Since ZFT is consistent (on the assumption that ZF is), so is
ZFUV(T) + T∗.
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This is a restricted version of conservativeness: it says that full set the-
ory applies conservatively to theories which are modellable in ZF. In
actual applications this is probably as much of the conservativeness
claim as we ever need. For instance, later on in the book we will want
to know that mathematics applies conservatively to a nominalistic ver-
sion of Newtonian gravitation theory, N. But it is completely obvi-
ous that if N is consistent then it is modellable in ZF (and the same
would presumably be true for other nominalized physical theories); so
the conservativeness result we actually need follows merely from the
consistency of ZF.

Scott Weinstein (besides clearing up a number of confusions I had
gotten into concerning the issues of the last paragraph) pointed out to
me that if you strengthen the consistency assumption about ZF slightly,
to ω-consistency (or even something a bit weaker than that known as
-consistency), you can strengthen (C) in an attractive way: you can then
prove

(C) If T is any consistent and recursively enumerable body of asser-
tions, then ZFUV(T) + T∗ is consistent.

It is all the more obvious that this would be sufficient for practical
applications.

Philosophers discussing set theory tend to discuss two of its properties:
its consistency, and its (alleged) truth.The argument of thismonograph is
that the latter is completely irrelevant, and that the former is perhaps a bit
tooweak—it is tooweak unless one is satisfiedwith (C) instead of the full
(C). [Of course, for the kind of set theory philosophers tend to discuss—
pure set theory, i.e. ZF—there is no difference at all between consistency
and conservativeness (or rather, though they differ conceptually, they are
provably equivalent). But pure set theory isn’t what is of interest, since

 To see this, observe first that the preceding note proved a slightly stronger result than
was claimed: it proved that if ZF + ‘T is consistent’ is consistent, then ZFUV(T) + T∗ is
consistent. So we now need only show that if ZF is ω-consistent and T is consistent and
recursively enumerable, then ZF + ‘T is consistent’ is consistent.
The reason for this is simple: if T is consistent, then nothing is a proof from T of ‘ = ’;

and if T is also recursively enumerable, ZF is strong enough to prove ‘k is not the Gödel
number of a proof from T of ‘ = ’ ’, for each numeral k. By the ω-consistency of ZF it
follows that one cannot prove in ZF anything of the form ‘∃x(x is the Gödel number of a
proof from T of ‘ = ’)’; so one can’t prove ‘T is not consistent’ from ZF, and so ZF + ‘T is
consistent’ is consistent.
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as remarked before it can never be applied to the physical world, so this
is not much of a justification for ignoring conservativeness.] But though
we perhaps need to assume a bit more than consistency, we don’t need to
assume all that much more; and in any case it seems pretty obvious that
the stronger property of conservativeness does in fact obtain.
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
First Illustration of Why
Mathematical Entities
are Useful: Arithmetic

I have explained why it is legitimate for a nominalist to use mathemat-
ics in making inferences between nominalistically stated sentences; but
I haven’t said anything about why or in what way it is useful for him to
do so. It is important to have a rather vivid understanding of the way that
mathematics is useful in such contexts if one is to grasp my strategy for
nominalizing physical theories, and so I will devote both this chapter and
the next to the matter.

Suppose N is a body of nominalistically stated premises; in the case
that will be of primary interest, N will consist of the axioms of a nom-
inalistic formulation of some scientific theory. I think that the key to
using a mathematical system S as an aid to drawing conclusions from
a nominalistic system N lies in proving in N∗ + S the equivalence of
a statement in N∗ alone with some other statement (which I’ll call an
abstract counterpart of the N∗-statement) which quantifies over abstract
entities. Then if we want to determine the validity of an inference in N∗ (or
equivalently, of an inference in N), it is unnecessary to proceed directly;
instead we can if it is convenient ‘ascend’ from one or more statements
in N∗ to abstract counterparts of them, then use S to prove from these
abstract counterparts an abstract counterpart of some other statement in
N∗, and ‘descend’ back to that statement in N∗. I will illustrate how this
procedure works in certain concrete cases; but again I must emphasize
that the only thing required for the procedure to be legitimate is not that
S be true but merely that N∗ + S be a conservative extension of N∗, a
condition which will always be met if Principle C of the previous chapter
is satisfied.
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My first illustration of this general procedure will be a very simple one;
here, the mathematical theory S to be applied is simply the arithmetic of
natural numbers (or more precisely, arithmetic plus a small amount of set
theory, since arithmetic without such things as functions from concrete
entities to numbers can never be applied).

Let N be a theory that contains the identity symbol and the usual
axioms of identity, but does not contain any terms or quantifiers for
abstract objects. In particular, N will not contain singular terms like ‘’.
It will, however, be convenient to suppose that N contains, besides the
usual quantifiers ‘∀’ and ‘∃’, also quantifiers like ‘∃’ (meaning ‘there are
exactly ’) and ‘∃≥’ (meaning ‘there are at least ’). The logic is still, of
course, recursively axiomatizable—e.g. we could merely add to standard
logic the axioms

∃≥xA(x) ↔ ∃xA(x)

∃≥kxA(x) ↔ ∃x[A(x) ∧ ∃≥jy(y �= x ∧ A(y))],
where k is the decimal numeral that immediately succeeds j, and

∃jxA(x) ↔ ∃≥jxA(x) ∧ ¬∃≥kxA(x),

where k and j are as above. In supposing that N contains this extra struc-
ture, we are not enriching either the expressive or the deductive power
of N, we are merely ensuring that we can say simply what can be said
only in a very roundabout way on the usual but artificial limitation to
the two standard quantifiers plus identity. In particular, I must emphasize
that by giving N this extra structure, I am not giving it any arithmetic:
it contains no singular terms or quantifiers for numbers or any other
abstract entities: the numeral ‘’ occurs in it not as a name, but merely
as part of an operator symbol. Our goal is to show how inferences in N
can be facilitated by introducing a system S that does contain arithmetic.

To see this, consider the following argument in N:

. There are exactly twenty-one aardvarks (i.e., ∃xA(x));
. On each aardvark there are exactly three bugs;
. Each bug is on exactly one aardvark; so
. There are exactly sixty-three bugs.

Is this valid? If one reasons in N, it will take a lot of work to find out—the
inference needed for getting from the premises to the conclusion is long
and tedious. (Though not nearly as bad as it would have been if we hadn’t
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introduced the numerical quantifiers!) But if we have at our disposal a
mathematical system S that includes the arithmetic of the natural num-
bers plus some set theory, things are considerably simplified. For then we
can take, as an abstract counterpart of the first premise, the claim

′. The cardinality of the set of aardvarks is ;

′ is an abstract counterpart of  because the equivalence of ′ and  is
provable in N + S. Abstract counterparts of the other premises, and of
the conclusion, are as follows:

′. All sets in the range of the function whose domain is the set of
aardvarks, and which assigns to each entity in its domain the set
of bugs on that entity, have cardinality .

′. The function mentioned in ′ is – and its range forms a partition
of the set of all bugs.

′. The cardinality of the set of all bugs is .

But now in S we can prove:

(a) If all members of a partition of a set X have cardinality α, and the
cardinality of the set of members of the partition is β , then the
cardinality of X is α · β .

(b) The range and domain of a – function have the same cardinality;
and

(c) · = .

But ′, ′, and ′, in conjunction with (a)–(c), entail ′; and since ′–′ are
abstract counterparts of –, i.e. their equivalence with – is provable in
N + S, we have proved  from – in N + S. So, by Principle C,  must
follow from – in N alone.

It is by some argument such as this that we know that  follows from
– in N; certainly it isn’t on the basis of having gone through a derivation
in N that we know this.

 To simplify things I haven’t shifted from N to N∗ in this case, because in this example
such a shift isn’t needed. If we did shift from N to N∗, we would rewrite  as

∗ There are exactly twenty-one aardvarks that are not mathematical objects.
and take as an abstract counterpart of ∗ the claim

(∗)′ The cardinality of the set of aardvarks that are not mathematical objects is .
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This illustration of the application of mathematics is a very special
one. Its special nature is illustrated by the fact that nothing was assumed
about the theory N other than that it contained the logic of identity
(supplemented with the numerical quantifiers; but these are in principle
superfluous). This is not typical of the application of abstract entities in
general, though it is typical of the application of the arithmetic of natural
numbers. The fact that the natural numbers can find useful application
outside the context of any powerful and specialized theories is what is
behind the widely shared feeling that the arithmetic of natural numbers
has a very special epistemological place. (Cf. for instance Kronecker’s
remark “God created the natural numbers, all the rest is the work of
man.”)

But the fact that the arithmetic of natural numbers has this special
status is not sufficient grounds to grant that it is true. For I have explained
its special status instrumentally: its special status arises from its utility,
and since we’ve shown that it is always in principle eliminable (i.e. you
don’t get any results with it that you couldn’t get without it), its utility is
no grounds for believing it true.

 Hilary Putnam gives a similar illustration in Putnam : cf. pp. –, and in
particular pp. –, where he points out that the application of number theory requires only
the consistency of mathematics. I was in fact originally led to the view that I take in this
monograph largely by thinking about these striking remarks of Putnam’s. Note, however,
that the conclusion that Putnam draws from his remarks is rather different from the one
I draw: his conclusion is that we should interpret pure mathematics as asserting the possible
existence of physical structures satisfying the mathematical axioms, whereas my conclusion
is that we don’t need to interpret pure mathematics at all.

In Putnam  he takes back the view put forth in the earlier paper, claiming in effect that
the account given of the application of number theory couldn’t possibly be extended to an
account of how the theory of functions of real variables is applied to physical magnitudes.
(Cf. : –. Putnam has presented this point at greater length in Putnam .) Perhaps
in part his pessimism is due to the assumption that any extension of the account of how
number theory is applied would have to be put into the framework of a reinterpretation of
mathematics; in any case, the later chapters of this monograph (starting with Chapter )
show how to perform the extension in question, if we forget about reinterpreting pure
mathematics and worry only about reinterpreting its applications.
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Second Illustration of Why
Mathematical Entities are
Useful: Geometry and
Distance

Let us turn now to more complicated applications of abstract entities.
Here, too, the situation fits the general description given in the second
paragraph of Chapter : abstract entities are useful because we can use
them to formulate abstract counterparts of concrete statements; then in
proving a conclusion in N∗ from premises in N∗, we can at any convenient
point ‘ascend’ from concrete statements to their abstract counterparts,
proceed at the abstract level for a while, and then finally ‘descend’ back to
the concrete.

In the cases of application of mathematics that I will now turn
to—which are the cases most important for physical theory—the key
to carrying out the general strategy of finding ‘abstract counterparts’ is
proving a representation theorem. Suppose that using some mathemati-
cal theory S which satisfies Principle C of Chapter , we can prove the
existence of some mathematical structure B with certain specified prop-
erties. If, using N∗ + S, we can then prove the existence of one or more
homomorphisms (structure-preserving mappings) from concrete objects
(or k-tuples of concrete objects) into that mathematical structure B, then
such a homomorphism will serve as a ‘bridge’ by which we can find
abstract counterparts of concrete statements. Consequently, premises
about the concrete can be ‘translated into’ abstract counterparts; then, by
reasoning within S, we can prove abstract counterparts of further concrete
statements, and then use the homomorphism to descend to the con-
crete statements of which they are abstract counterparts. The concrete
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conclusions so reached would always be obtainable without the ascent
into the abstract (provided that the mathematical theory S satisfies Prin-
ciple C); but the ascent into the abstract is often a tremendous saving of
time and effort.

Let me illustrate this with an example: Hilbert’s axiomatization of
Euclidean geometry (Hilbert ). Any fully formulated physical theory
will include a theory of physical space (or better, of space-time; but since
our concern for the moment will be with Euclidean geometry, let’s just
consider space). Euclidean geometry, considered as a theory of physical
space (which is how Euclid originally conceived it) is actually false, but
that doesn’t matter for my purposes: a false theory is still a theory, and
we can use such a theory to illustrate the applicability of mathematical
systems like the system of real numbers. Hilbert’s formulation of the
Euclidean theory is of special interest here because (besides being rig-
orously axiomatized) it does not employ the real numbers in the axioms;
nevertheless, it explains why the system of real numbers can be usefully
applied in geometric reasoning.

Without purporting to be very precise, we can say that Hilbert’s theory
is one in which the quantifiers range over regions of physical space, but
do not range over numbers. The predicates of the theory include several,
such as ‘is a point’, which need not concern us. In addition they include
the following:

(a) a three-place predicate between, where ‘y is between x and z’ (sym-
bolically, ‘y Bet xz’) is understood intuitively to mean that y is a
point on the line-segment whose endpoints are x and z (the case
where y = x or y = z is allowed, i.e. we’re dealing with what I’ll call
inclusive betweenness);

(b) a four-place predicate of segment-congruence, which I’ll write as ‘xy
Cong zw’, understood intuitively to mean that the distance from
point x to point y is the same as the distance from point z to point w;

and perhaps also

(c) a six-place predicate of angle-congruence, which I’ll write as ‘xyz
A-Cong tuv’, understood intuitively to mean that the angle formed
by points x, y, and z with vertex at y is the same size as the angle
formed by points to t, u, and v with vertex at u.
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(The last of these predicates doesn’t actually need to be taken as primitive,
it can be defined in terms of the others.) Now, I have explained (b) and
(c) intuitively in terms of distance and angle-size. But these explanations
are not part of the theory: in fact the notions of distance and angle-size
can’t be defined in the theory (as is obvious from the fact that the theory
doesn’t quantify over real numbers).

The fact that these quantitative notions are not definable in the theory
might appear to raise a problem for Hilbert’s formulation, for much of
the reasoning in a typical book on Euclidean geometry proceeds in terms
of the lengths of line-segments and/or the size of angles: in fact, many of
the theorems are explicitly theorems about lengths (e.g. Pythagoras’s the-
orem). Does this mean that Hilbert left something out? No, for he proved
the kind of theorem I’m calling a representation theorem: he proved (in a
broader mathematical theory) that given any model of the axiom system
for space that he had laid down, there would be at least one function d
mapping pairs of points onto the non-negative real numbers, satisfying
the following ‘homomorphism conditions’:

(a) for any points x, y, z and w, xy Cong zw if and only if d(x, y) =
d(z, w);

(b) for any points x, y and z, y is between x and z if and only if d(x, y) +
d(y, z) = d(x, z).

So if we take d to represent distance, segment-congruence becomes
‘equivalent’ to just the claim about distance we ’ d expect, and similarly for
betweenness. (Hilbert also proved the existence of a function m mapping
triples of points into numbers, satisfying analogous conditions: m was a
representation for angle-sizes.) Given these results it was easy to show that
the standard Euclidean theorems about lengths and angle-sizes would be
true if restated as theorems about any functions d and m meeting the
given conditions. So in the geometry itself we can’t talk about numbers,
and hence we can’t talk about distances or angle-sizes; but we have a
metatheoretic proof which associates claims about distances or angle-
sizes with what we can say in the theory. Numerical claims then, are
abstract counterparts of purely geometric claims, and the equivalence
of the abstract counterpart with what it is an abstract counterpart of is
established in the broader mathematical theory.

Incidentally, in addition to the representation theorems Hilbert estab-
lished uniqueness theorems, one for distance, one for angle-size: e.g. the
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uniqueness theorem for distance says that if d and d are two functions
mapping pairs of points into non-negative reals, both of which satisfy the
two conditions just laid down, then d and d differ only by a positive
multiplicative constant; and conversely, that if d and d differ only by a
positive multiplicative constant, then d satisfies (a) and (b) if and only if
d does. Thus the fact that geometric laws, when formulated in terms of
distance, are invariant under multiplication of all distances by a positive
constant, but are not invariant under any other transformation of scale,
receives a satisfying explanation: it is explained by the intrinsic facts about
physical space, i.e. by the facts about physical space which are laid down
without reference to numbers in Hilbert’s axioms. This is a point that
will be important later, but for now let’s go back to the representation
theorem.

Hilbert’s representation theorem, I’ve said, shows that statements that
talk about space alone, without reference to numbers, are equivalent to
certain ‘abstract counterparts’ which do talk about numbers. Because of
this, we can use the theorem as a device for drawing conclusions about
space (conclusions statable without real numbers) much more easily than
we could draw them by a direct proof from Hilbert’s axioms. For instance,
it is not difficult to say intrinsically (see Figure ):

(a) that a, a, a and b, b, b form right triangles with right angles
at a and b;

(b) that there is a segment cd such that aa is twice the length of cd,
aa is five times the length of cd, bb is three times the length of
cd, and bb is four times the length of cd. (E.g. we say that aa is
twice the length of cd by saying that there is a point x between a
and a such that ax Cong cd and xa Cong cd.)

One might then wonder whether aa is longer than bb. If one tries to
answer this without using the representation theorem, it will be very diffi-
cult. But if one uses the representation theorem, one can invoke Pythago-
ras’s theorem to quickly establish that aa is

√
 times the length of cd

and that bb is five times the length of cd and therefore that aa is indeed
longer than bb.

So invoking real numbers (plus a bit of set theory) allows us to
make inferences among claims not mentioning real numbers much more
quickly than we could make those inferences without invoking the reals.
And the inferences we make in this way will be correct every time.
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Prima facie, this might seem to be good evidence that the theory of real
numbers (plus some set theory) is true: after all, if it weren’t true, invoking
it in arguments in this way ought to sometimes lead from otherwise true
premises to a false conclusion. But we’ve seen in Chapter  that this prima
facie plausible argument is deeply mistaken: the fact that the theory of
real numbers (plus set theory) has this truth-preserving property is a
fact that can be explained without assuming that it is true, but merely
by assuming that it is conservative, which is a different matter entirely;
in fact, as remarked in the Appendix, we really need only to assume a
restricted form of conservativeness, which follows from the consistency
of set theory alone.
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Nominalism and the
Structure of Physical Space

Thereadermight reasonablywonder about the assertion at the very end of
the previous chapter: after all, Principle C says that when mathematical
theories are added to nominalistic theories, you can never deduce any
nominalistic consequences you couldn’t deduce otherwise; but I haven’t
yet claimed that Hilbert’s formulation of the Euclidean theory of space is
genuinely nominalistic, I have claimed only that it doesn’t quantify over
real numbers. Now, this worry can be easily alleviated: for whether or
not Hilbert’s theory ought to be counted nominalistic on philosophical
grounds, there can be no doubt that (if set theory is consistent) our
mathematical theories apply to it in a conservative fashion. I will explain
this, but first I want to raise the more controversial question of whether
Hilbert’s formulation of the Euclidean theory of physical space can be
counted as genuinely nominalistic on philosophical grounds. This ques-
tion raises several important issues.

I
Some of these issues can be brought out by considering the following
objection. ‘Hilbert’s axiomatization of geometry just builds into physi-
cal space all the complexity and structure that the platonist builds into
the real number system. For instance, Hilbert’s axiomatization requires
physical space to be uncountable, and in fact requires lines in physical
space to be isomorphic to the real numbers. And there doesn’t seem to
be a very significant difference between postulating such a rich physical
space and postulating the real numbers.’

In reply to this, let me first remind the reader that as I am conceiving
nominalism, the nominalistic objection to using real numbers was not
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on the grounds of their uncountability or of the structural assumptions
(e.g. Dedekind completeness) typically made about them. Rather, the
objection was to their abstractness: even postulating one real number
would have been a violation of nominalism as I’m conceiving it. Con-
versely, postulating uncountably many physical entities (e.g. uncountably
many parts of a physical object, or of a light ray, or, as here, of physical
space itself) is not an objection to nominalism; nor does it become any
more objectionable when one postulates that these physical entities obey
structural assumptions analogous to the ones that platonists postulate for
the real numbers.

Perhaps it is a bit odd to use the phrase ‘physical entity’ to apply to
space-time points. But however this may be, space-time points are not
abstract entities in any normal sense. After all, from a typical platonist
perspective, our knowledge of mathematical structures of abstract enti-
ties (e.g. the mathematical structure of real numbers) is a priori; but the
structure of physical space is an empirical matter. That is, most platonists
who believe current physical theory believe that it is a priori true that
there are real numbers obeying the usual laws, and that it is a high-level
empirical hypothesis (not easily disconfirmed, but subject to revision by
the development of an alternative physical theory) that there are lines
in space which (locally anyway) are isomorphic to the real numbers. No
platonist would identify the real numbers with the points on any physical
line: for one thing, it would be arbitrary which such line one picked to
identify the real numbers with, and arbitrary which point on the line to
identify with  and which with ; but more fundamentally, to make any
such identification would be to identify the real numbers with something
we can know about only empirically. (Occasionally it is suggested by those
seeking a satisfactory formulation of quantum mechanics that we ought
to view space and time as quantized. To my knowledge, no such proposal
has ever been worked out very far; but if one were, and if it turned out
to make the best sense of the evidence and best solve the interpretational
difficulties of quantum theory, we would have strong empirical reasons

 Added in nd edition: I thought it was obvious that this was a joke: the suggestion
that we might posit a single object and regard it as a real number is ludicrous. It’s bad form
to explain when one is joking, but I’ve been dismayed that several good philosophers have
taken the remark at face value.

 For the reader who wonders why I say ‘space-time point’ instead of ‘point of space’:
your curiosity will be alleviated in the last paragraph of section I of this chapter.
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to believe that between any two space-time points there are only finitely
many others. Surely however we ought not to count such a development
as an empirical discovery that there are only finitely many real numbers
between  and .)

Even ignoring these points, there is a further reason that postulating
physical space isn’t like postulating real numbers: and that is that the ide-
ology that goes with the postulate of points of space is less rich than that
which goes with the postulate of the real numbers. With the postulate of
real numbers goes the operations of addition and multiplication: no such
operations are directly defined on space-time points in Hilbert’s theory;
indeed none are even implicitly definable since any introduction of an
addition or multiplication function on space-time points would have to
rely on an arbitrary choice of one point to serve as  and another to serve
as . Something like addition can be reconstructedwithinHilbert’s theory,
but it is addition of intervals rather than of points (and it doesn’t give an
addition function but rather a non-functional relation, ‘interval x is the
same length as the sum of intervals y and z’). With multiplication, we
can’t even reconstruct the relation of one interval being the product of
two others: any introduction of such a product relation on intervals would
have to depend on an arbitrary choice of one interval to serve as ‘the unit
interval’, and no such notion is employed in the Hilbert theory. The best
one can do with the Hilbert primitives is to reconstruct comparisons of
products of intervals, and it takes quite a bit of work to reconstruct such
comparisons in a suitably generalizable way. These observationsmake it
clear that the objection that we are using the space-time points as if they
were real numbers is quite erroneous.

These points are further reinforced by the fact that the usual theory
of real numbers includes not only the first-order theory that invokes
only the functions of addition and multiplication: it includes also the
apparatus of quantification over functions defined on the real numbers,
and also enough higher-order sets to enable us to define the continuity,
differentiability, etc. of such functions. No such apparatus is invoked
in the theory that takes space-time points as the objects of quantifica-
tion: though we will eventually see that the invariant content of many

 ‘In a suitably generalizable way’ means ‘in a way generalizable to products of spatio-
temporal intervals with scalar intervals’. The suitably generalized way of making product
comparisons is given in Chapter .
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statements of continuity, differentiability, etc. of functions is expressible
in the system to be developed, it is to be expressed without referring to or
quantifying over functions or anything like functions.

One might think that if the system of space-time points was as distinct
from the system of real numbers as I’ve been saying, then it would be a
remarkable coincidence that points on a physical line should happen to
have precisely the structure of such an important mathematical system
as the real numbers, and that important mathematical operations (e.g.
differentiation) on functions of real numbers should have analogs which
play an important role in the physical theory. Surely, it could be argued,
this can’t be a coincidence: doesn’t this show then that the physical theory
is really platonism in disguise?

The trouble with this objection is that it completely ignores history: the
theory of real numbers, and the theory of differentiation etc. of functions
of real numbers, was developed precisely in order to deal with physical
space and physical time and various theories in which space and/or time
play an important role, such as Newtonianmechanics. Indeed, the reason
that the real number system and the associated theory of differentiation
etc. is so important mathematically is precisely that so many of the prob-
lems to which we want to apply mathematics involve space and/or time.
It is hardly surprising that mathematical theories developed in order to
apply to space and time should postulate mathematical structures with
some strong structural similarities to the physical structures of space and
time. It is a clear case of putting the cart before the horse to conclude from
this that what I’ve called the physical structure of space and time is really
mathematical structure in disguise.

So in summary: there is indeed a good deal in common between on
the one hand the structure of physical space that both I and the platonists
postulate and on the other hand the structure of mathematical objects
postulated by platonists; and there is an obvious reason why there should
be this commonality of structure, given that the mathematics was devel-
oped to deal with physical space (and time). Still, there are many ways in
which the physical structure is less rich than the mathematical structure
(e.g. no addition relation defined on points; no multiplication relation
defined on points or even on intervals; no functions, sets of functions,
etc.). And the physical structure is all an empirical postulate, subject to
revision by experience in a way that mathematics is not.
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There are, to be sure, certain views of space-time according to which
the quantification over space-time points or space-time regions really
would be a violation of nominalism. I’m speaking of relationalist views
of space-time, as opposed to the substantivalist view. According to the
substantivalist view, which I accept, space-time points (and/or space-time
regions) are entities that exist in their own right. In contrast to this are
two forms of relationalist view. According to the first (reductive relation-
alism), points and regions of space-time are some sort of set-theoretic
construction out of physical objects and their parts; according to the
second (eliminative relationalism), it is illegitimate to quantify over points
and regions of space-time at all. It is clear that reductive relationalism is
unavailable to the nominalist: for according to that form of relationalism,
points and regions of space-time are mathematical entities, and hence
entities that the nominalist has to reject. So a nominalist must either be a
substantivalist or be an eliminative relationalist, and only in the first case
can he find Hilbert’s theory acceptable.

It is my view however that independently of nominalism, a substanti-
valist view is preferable to either form of relationalist view, for a number
of reasons most of which cannot be discussed here. I will merely say that
I don’t think that any relationalist programme, of either a reductive or
an eliminative sort, has ever been satisfactorily carried out, even given a
full-blown platonistic apparatus of sets. The problem for relationalism is
especially acute in the context of physical theories that take the notion of a
field seriously, e.g. classical electromagnetic theory. From the platonistic
point of view, a field is usually described as an assignment of some prop-
erty, or some number or vector or tensor, to each point of space-time;
obviously this assumes that there are space-time points, so a relationalist
is going to have to either avoid postulating fields (a hard road to take
in modern physics, I believe) or else come up with some very different
way of describing them. The only alternative way of describing fields
that I know is the one I use later in the monograph in connection with
the gravitational potential field in Newtonian mechanics: it does without

 Or anyway, it is illegitimate to quantify over unoccupied points and regions: quan-
tification over occupied points or regions (i.e. points or regions wholly occupied by parts
of physical objects) could be regarded as equivalent to quantifying over the objects which
occupy them, and hence as unproblematic for the relationalist.
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the properties or the numbers or vectors or tensors, but it does not do
without the space-time points. In general, it seems to me that recent
developments in both philosophy and physics havemade substantivalism
a much more attractive position than it once was; it certainly has been
adopted by the majority of the ‘new wave’ of space-time theorists. (For
two good discussions, see Earman  and Friedman .) In any case,
substantivalist views of space-time are certainly possible, and on such a
substantivalist view it is perfectly nominalistic to quantify over space-
time points and/or space-time regions.

Actually this doesn’t justify quantifying over points or regions of space,
if a point or region of space is construed as an entity that endures through
time. And indeed, there are real difficulties about quantifying over points
or regions of space on any such construal, for on such a construal it would
seem to make objective sense to ask whether two non-simultaneous
events are at the same point of space, and hence to ask whether a given
object is at absolute rest. The notion of absolute rest is one that positivists
have quite rightly objected to, in my view: this is a point I will return to
briefly in the next chapter. Fortunately, however there is a way to construe
quantification over points and regions of space so that it involves no
commitment to absolute rest, in any physical theory in which a notion of
simultaneity is available: simply regard a claim about space as an abbre-
viation for the assertion that the claim holds for each of the spatial slices
of space-time (i.e. the slices generated by the simultaneity relation). So
the claim that physical space is Euclidean is translated into the claim that
each of the spatial slices of space-time is Euclidean. It is trivial to rewrite
Hilbert’s axiomatization of the geometry of space so that that is explicitly
what it says; if we do so, then the objects in the domain of the quantifier
are really space-time points rather than points of space, and there can
be no danger of viewing the theory as being committed to the idea that
absolute rest is a physically significant notion. (I won’t bother to explain

 Note incidentally that according to theories that take the notion of a field seriously,
space-time points or regions are full-fledged causal agents. In electromagnetic theory for
instance, the behavior of matter is causally explained by the electromagnetic field values at
unoccupied regions of space-time; and since, platonistically speaking, a field is simply an
assignment of properties to points or regions of space-time, this means that the behavior
of matter is causally explained by the electromagnetic properties of unoccupied regions.
So according to such theories space-time points are causal agents in the same sense that
physical objects are: an alteration of their properties leads to different causal consequences.



OUP CORRECTED PROOF – FINAL, //, SPi

nominalism and the structure of space 

how to rewrite Hilbert’s theory in this way however, since the theory that
resulted would be of less use than a stronger nominalistic theory about
space-time structure to be set out in Chapter .)

II
I have allowed our nominalist to quantify over points or regions of
space-time. Is there any reason why he shouldn’t quantify over both
points and regions? Some philosophers would be willing to accept the
existence of certain kinds of regions—say, regular open regions—but
not of points. This is not a view I object to: it may well be possible to
find nominalistic systems similar in many respects to the Hilbert system
(and to the systems to follow later on in the book), but that quantify
over arbitrarily small regular open regions instead of over points; and if
it is possible, then the nominalist has no reason to object to dispensing
with points in favor of regular open regions. But I also do not see that
the nominalist has any particular reason to forego points for arbitrarily
small regular open regions—the desire for such purity is a quasi-finitist
desire, not a nominalist desire. Since the desire to forego points is not
one I share, and since it appears to be mathematically difficult, I will
make no attempt to satisfy that desire in this book.

How about the converse question: given a nominalism in which we
quantify over space-time points, is there any added difficulty in quan-
tifying over regions? If our nominalist accepts Goodman’s calculus of
individuals (Goodman : part IV), then the introduction of points
carries with it the introduction of regions: for a region is just a sum (in
Goodman’s sense) of the points it contains. And even if one does not
accept the calculus of individuals in general—even if one thinks that
there are entities that can’t meaningfully be ‘summed’—there seems to
be little motivation for allowing points and yet disallowing regions: in
fact, it seems attractive to regard points of space-time as a special case of
regions, namely as regions of minimal size. So it seems to me that regions
are nominalistically acceptable. (I should note however that only fairly

 As the reference to Goodman indicates, I use ‘region’ in such a way that there is no
empty region, i.e. no region containing no space-time points. Also regions don’t need to be
connected, or measurable, or anything like that: very ‘unnatural’ collections of points count
as regions.
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‘regular’ regions are directly used in the monograph, so a nominalist who
would balk at the use of highly ‘irregular’ regions need not balk at the uses
to which regions will actually be put.)

If these claims about what should count as nominalistic are accepted,
then there is at least an important sense in which Hilbert’s formulation
of the Euclidean theory of space is nominalistic, or can be made so
with a little rewriting. Hilbert’s theory is usually formulated as a second-
order theory, in which the first-order variables range over points, lines,
and planes; in other words, the first-order variables range over regions
of various kinds. Consequently, the second-order variables range over
sets of points, lines, and planes, and that doesn’t look very nominalistic.
However, only one second-order axiom is really needed, the Dedekind
continuity axiom; and this axiom quantifies only over non-empty sets of
points. This is important, for in the absence of any further use of sets,
there is no substantive difference between a non-empty set of points on
the one hand and a Goodmanian sum of points, or a region, on the
other. So we can regard the second-order quantifiers inHilbert’s theory as
ranging over regions. (And if we like, we can then restrict the range of the
first-order quantifiers to points, either by using second-order quantifiers
whenever we want to speak of lines and planes, or by paraphrasing claims
about lines and planes in terms of claims about points and the relation of
betweenness.) If we write Hilbert’s theory in this way, then the quantifiers
(both first-order and second-order) range only over regions of space; and
I’ve argued that regions of space are nominalistically acceptable entities.
So if we write Hilbert’s formulation of the Euclidean theory of space in this
way, it has a purely nominalistic ontology.

It does, admittedly, have a logic that one might find objectionable: it
involves what might be called the complete logic of the part/whole rela-
tion, or the complete logic of Goodmanian sums, and this is not a recur-
sively axiomatizable logic. To clarify this, note that the theory as I’ve
suggested it be written is still a second-order theory, that is, it still involves
second-order logic: it is merely that because of the nature of the objects
in the range of the first-order quantifiers (viz. because they do not over-
lap), and because also we haven’t invoked variables for functions or for

 This is not to deny that there might be difficulties in figuring out how to axiomatize
the ‘regular’ regions without assuming the existence of the ‘irregular’ ones. How difficult
this task would be presumably depends on the concept of regularity involved.
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predicates of more than one place, no nominalistically dubious entities
need be invoked to serve in the range of the second-order quantifiers.This
ontological difference is perhaps sufficiently striking so that we ought not
to call the logic ‘second-order logic’ anymore, but something else, such as
‘the complete logic of Goodmanian sums’; nonetheless, the consequence
relation is still like that of second-order logic, which is not recursively
axiomatizable. Consequently, insofar as one objects to the strength of
the second-order consequence relation, one will object to this version of
Hilbert’s formulation of the Euclidean theory of space.

I share the feeling that the invocation of anything like a second-order
consequence relation is distasteful, andwill discuss the possibility of elim-
inating it in the final chapter of the book. For now, let me simply note
that for platonistic theories too, the most natural and intuitive formula-
tion of a theory is often a second-order formulation. For instance, intu-
itive set theory—by which I mean not the intuitive Cantorian set theory
that was shown inconsistent, but the intuitive set theory that underlies
the Zermelo-Fraenkel and similar axiomatizations—is a second-order
theory: e.g. it will include as an axiom or a theorem the second-order
separation principle

∀P∀x∃y∀z(z ∈ y ↔ z ∈ x ∧ P(z)).

To get a first-order axiomatization we have to weaken the theory, replac-
ing the second-order axiom or axioms by schemas of first-order axioms,
namely the schema of replacement and/or separation. This first-order
weakening of intuitive set theory has a lot of ‘non-standard’ models
(e.g. models in which sets that are really infinite satisfy the formula
that is usually regarded as defining finiteness): such models are ‘non-
standard’ precisely because they are not models of second-order set
theory. Similarly, the second-order Hilbert axiomatization of geometry
can be weakened to a first-order system, in either of two ways: a severe

 SeeMontague : –, for the sort of second-order axiomatization I have inmind,
and a defense of the idea that not only in set theory but elsewhere as well, theway to explicate
the idea of a standard model of a first-order theory is as ‘model of an associated second-
order theory’. As Montague points out, the models of Zermelo-Fraenkel set theory that are
‘standard’ on this explication are precisely those models that are isomorphic to models in
which the domain is the set of all sets of rank less than α for some strongly inaccessible
α (greater than ω), and in which ‘∈’ is assigned the membership relation restricted to this
domain. I agree with Montague that this is the most natural notion of a standard model for
set theory.
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weakening which entirely drops the use of regions bigger than points has
been studied by Tarski (), and a less severe weakening to a first-order
axiomatization will be mentioned in the final chapter. But these first-
order weakenings of the Hilbert system all have non-standard models.
These non-standard models together with the non-standard models of
first-order set theory make the question of the relation between the first-
order nominalistic theory and the first-order platonistic theory harder to
settle; a representation theorem like Hilbert’s is much easier to state and
prove if it is taken as relating the intuitive (second-order) nominalistic
geometry to the intuitive (second-order) set theory than if it is taken as
relating their first-orderweakenings. For this reason Iwill put off the issue
of first-order axiomatization until the final chapter.

Since I am putting that off, it is necessary to make sure that nothing in
my remarks in the previous chapter, about the philosophical significance
of Hilbert’s representation theorem, turned on the false assumption that
Hilbert’s axiomatization was first order. The only remark which might
seem suspect from this point of view came at the very end of the chapter.
After pointing out that mathematical entities (real numbers together with
functions from space-time points into the reals) can usefully be employed
in connection with Hilbert’s axiomatization, and that when they are
employed we are never led to a false conclusion about space from true
premises, I raised the question of whether this fact is evidence that the
theories which postulate mathematical entities are true. My answer was
no: we could, I claimed, explain the truth-preservingness of mathematics
in this context entirely by its conservativeness, which is a much weaker
(ormore accurately, a quite different) property; in fact, I remarked that we
really only need to assume a restricted form of conservativeness, which
follows from the consistency of mathematics alone. This, however, raises
a question: is the consistency of mathematics (i.e. the consistency of set
theory, since mathematics reduces to set theory) sufficient to entail that
mathematics can be employed in reasoning about second-order theories
in a truth-preserving way?The answer is that the semantic consistency of
second-order set theory is sufficient for this conclusion: in fact, the main
arguments of theAppendix toChapter  go overwith little alterationwhen
all the theories are taken to be second order. The upshot is that in the

 In more detail: recall that conservativeness as I defined it initially is a semantic
notion, one involving consequence rather than provability. In the Appendix to Chapter ,
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context of reasoning about Euclidean geometry at least, the nominalist
can invoke the theory of real numbers (with the attendant functions) as
much as he likes, for he is guaranteed that he can never be led into error
by so doing.

I reformulated it in terms of consistency; this is ambiguous between the semantic and the
syntactic, but in referring to some of the arguments as proof-theoretic, and in the way I
wrote the proof in note , I showed that it was the syntactic notion I was dealing with.
The justification for the shift from semantic to syntactic notions is of course the Gödel
completeness theorem for first-order logic. In the case of second-order logic there can be no
such completeness theorem: here, wemust stick to semantic notions throughout. But the key
results of theAppendix remain unchanged. In particular, if ‘consistent’ in (C) is understood
as ‘semantically consistent’, the set-theoretic proof of (C) is as before: themethod described
for turning a model of T into a model of ZFUV(T) + T∗ can remain unchanged as long as
both ZFU and T are second-order theories. (Recall the remarks in note  on what the
models of second-order set theory are like.) Analogously, the proof in note  that (C)
follows from the consistency of ZF needs no alteration when T and ZF are made second
order, except that since we’re replacing syntactic consistency by semantic consistency, the
step involving the Gödel completeness theorem is unnecessary. (Two less central results of
the Appendix are more problematic: the proofs via the Robinson theorem (which is not
valid in second-order logic) and Weinstein’s proof that the ω-consistency of ZF suffices for
(C). But these results are not required for the remarks in the text to be true.)
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My Strategy for
Nominalizing Physics,
and its Advantages

So far, I have not tried to argue that we can come up with nominalistic
theories to replace platonistic ones: I have merely argued that if we had a
nominalistic theory, then it would be legitimate to introducemathematics
as an auxiliary device that aids us in drawing inferences; and I have tried
to indicate why that auxiliary device would be useful, and to show that
its usefulness as an auxiliary device is no grounds whatever for supposing
that it consists of a body of truths. The real question then is whether an
attractive nominalistic formulation of physics is possible. I say an attrac-
tive nominalistic formulation, because if no attractiveness requirement is
imposed, nominalization is trivial: simply take as axioms of your physical
theory all the nominalistically statable consequences of the platonistic
formulation of the theory. (Or, if you want a recursive set of axioms, take
the Craigian transcription of the set of nominalistically statable conse-
quences.) Obviously, such ways of obtaining nominalistic theories are of
no interest. The way that I will suggest of obtaining nominalistic theories
is very different from this.

In order initially to motivate the idea that an attractive nominalistic
formulation of physics is possible, let us return toHilbert’s axiomatization
of geometry. There are two approaches to axiomarizing geometry, some-
times called the metric approach and the synthetic approach. In the metric
approach we take as primitive a particular function-symbol d, which
we regard as denoting a particular mapping of pairs of points of space
into the real numbers. Then if we regard the mathematical laws of real
numbers, functions, and so forth as independently given, we can use d to
lay down a relatively simple set of axioms for the geometry.The synthetic
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approach is the one that Hilbert followed, the one which does without
real numbers, functions, etc.This approach is also the one that Euclid had
(less rigorously) followed long before—Euclid had to follow the synthetic
approach, because the theory of real numbers hadn’t been sufficiently
developed in his day for the metric approach to be possible. (The real
numbers were in fact first introduced into mathematics as a means of
simplifying geometric reasoning.) But to anyone already familiar with
the theory of real numbers, the metric approach is a good deal easier,
and for that reason it is used in many recent books in geometry. If one
were familiar only with the metric approach to Euclidean geometry, one
would probably conclude that one needs to quantify over real numbers in
developing a theory of the geometry of space.TheHilbert axiomatization,
however, shows that this is not so.

My guess is that the same is true for other physical theories. Insofar
as they’ve been rigorously formulated at all, they’ve been formulated
platonistically, for it is easier to formulate a theory that way when one
has a sufficiently developed mathematics. My guess, however, is that a
thorough foundational analysis of such theories will show that reference
to real numbers, etc. is no more necessary in them than it is in geom-
etry. And this isn’t a mere guess: I substantiate it in Chapters – with
respect to one physical theory, viz. Newton’s theory of gravitation; and
it would be routine to extend the nominalistic treatment of gravitational
theory to other theories with a similar format, such as special relativistic
electromagnetic theory.

I believe that such ‘synthetic’ approaches to physical theory are advan-
tageous not merely because they are nominalistic, but also because they
are in some ways more illuminating thanmetric approaches: they explain
what is going onwithout appeal to extraneous, causally irrelevant entities.
The attempt to eliminate theoretical entities of physics (e.g. electrons)
from explanations of observable phenomena is not likely to be possible
without bizarre devices like Craigian transcriptions; it is also not likely
to be illuminating even if it is possible, because electrons are causally
relevant to the phenomena they are invoked to explain. But even on
the platonistic assumption that there are numbers, no one thinks that
those numbers are causally relevant to the physical phenomena: num-
bers are supposed to be entities existing somewhere outside of space-
time, causally isolated from everything we can observe. If, as at first
blush appears to be the case, we need to invoke some real numbers like
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. × − (the gravitational constant in m/kg−/s−) in our explana-
tion of why themoon follows the path that it does, it isn’t becausewe think
that that real number plays a role as a cause of the moon’s moving that
way; it plays a very different role in the explanation than electrons play
in the explanation of the workings of electric devices. The role it plays
is as an entity extrinsic to the process to be explained, an entity related
to the process to be explained only by a function (a rather arbitrarily
chosen function at that). Surely then it would be illuminating if we could
show that a purely intrinsic explanation of the process was possible, an
explanation that did not invoke functions to extrinsic and causally irrel-
evant entities.

In saying that this is an advantage, I don’tmean to suggest that extrinsic
explanation should always be avoided: the point is rather that from a
proper synthetic theory, one will be able to prove the equivalence of the
intrinsic and extrinsic explanations. (That is, one will be able to prove that
the two explanations are equivalent given the assumption that the entities
involved in the extrinsic explanation exist. If one believes that they don’t
exist, then one will hold that the extrinsic explanation is merely a useful
fiction, but one which can be used in good conscience by anyone who
knows of the intrinsic explanation, because of the conservativeness of
mathematics.) An illustration of this is provided by synthetic geometry:
given the axioms of synthetic geometry, one can prove (given standard
mathematics) the equivalence of on the one hand explanations of features
of physical space stated in terms of betweenness and congruence and
on the other hand extrinsic explanations involving quantitative distance
and angle measures; hence one is free to use the extrinsic explanations
in practice.

I am saying then that not only is it much likelier that we can eliminate
numbers from science than electrons (since numbers, unlike electrons, do
not enter causally in explanations), but also that it is more illuminating to
do so. It is more illuminating because the elimination of numbers, unlike
the elimination of electrons, helps us to further a plausible methodolog-
ical principle: the principle that underlying every good extrinsic expla-
nation there is an intrinsic explanation. If this principle is correct, then
real numbers (unlike electrons) have got to be eliminable from physical
explanations, and the only question is precisely how this is to be done.

Note that the principle I’ve italicized is not a nominalistic principle:
it could perfectly well be accepted by a platonist, though of course, not
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by any platonist who believed that one could argue for platonism by
saying that mathematical entities are needed for physics. Conversely, a
nominalist need not accept the principle.There are indeed ways of trying
to establish the possibility of nominalism that, even if successful, would
not establish the italicized principle. One such approach is that of Charles
Chihara . Chihara’s approach is one of those alluded to in the intro-
duction, on which one tries to reinterpret mathematics: in this case, one
reinterprets it as being about linguistic entities instead of abstract entities.
I findmy approach preferable to his for three reasons. In the first place, as
Chihara of course recognizes, the linguistic view requires that only pred-
icative mathematical reasoning be used in application, and it isn’t at all
obvious that we don’t need impredicative reasoning in doing science. (My
view licenses (but doesn’t demand) the use of impredicative reasoning, as
we shall see in Chapter .) In the second place, the linguistic entities that
Chihara appeals to include sentence types no token of which has even
been uttered, and it is not at all obvious tome whether these should count
as nominalistically legitimate. But third andmost fundamental, Chihara’s
view does nothing to illuminate the use of extrinsic, causally irrelevant
entities in the application of mathematics. That is, Chihara’s methods do
not show us how to provide intrinsic explanations underlying extrinsic
explanations; theymerely show that linguistic surrogates ofmathematical
entities can be used in place of mathematical entities in our extrinsic
explanations (a fact which I take to be uninteresting, since as I’ve argued,
there is no need in themathematical case to regard extrinsic explanations
as literally true).

I conclude this chapter by noting that one of the things that gives plau-
sibility to the idea that extrinsic explanations are unsatisfactory if taken
as ultimate explanation is that the functions invoked in many extrinsic
explanations are so arbitrary. For example, in the case of geometry, the
choice of one distance function over any other one which differs from
it by positive multiplicative constant is completely arbitrary; it reflects
in effect an arbitrary choice of units for distance. (When we move from
geometry to physics generally, there is in the metric approach not only an
arbitrary choice of a unit of distance, but also an arbitrary choice of units
for other quantities, an arbitrary choice of a rest frame, and various other
arbitrary choices as well.) Now an analogous arbitrariness could exist on
an intrinsic approach too: it would exist if we singled out a particular pair
of points of space-time (say, the endpoints of a certain platinum rod in
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the Bureau of Standards at such and such a time), and constantly referred
to this pair of points inmaking distance comparisons when we developed
the theory. Hilbert, however, did not resort to such an unaesthetic move
in his intrinsic development of geometry; nor shall I resort to it in my
intrinsic formulation of gravitational theory. What Hilbert did do (in
his uniqueness theorem) was to explain, in terms of intrinsic facts about
space which are statable without such arbitrary choices, why the choice of
functions to be invoked in the extrinsic theory will be arbitrary to precisely
the extent that it is. This feature of the Hilbert approach to geometry is
highly attractive, and it is a feature I will take pains to emulate when
I extend the synthetic treatment of geometry to a synthetic treatment of
gravitational theory.
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A Nominalistic Treatment
of Newtonian Space-Time

I turn now to the problem of giving a nominalistic formulation of
physics, a formulation whichmeets the additional constraints imposed in
Chapter : it is to be ‘attractive’, unlike Craigian axiomatizations; it is to be
a ‘purely intrinsic’ formulation; and it is to be a formulation that does not
appeal to arbitrarily chosen objects to serve as units of length, or to arbi-
trarily chosen systems of coordinates, or to any such thing.These further
constraints are not very precise, but I hope that they are reasonably clear;
for I will implicitly and sometimes explicitly invoke these constraints
(especially the last one) in motivating the construction to follow.
The first step in giving a nominalistic formulation of physics is to give

a nominalistic treatment of space-time. I’ve already discussed a nomi-
nalistic treatment of space, but space-time is a little different, both in
Newtonian mechanics and in special relativity. It is different not just in
being -dimensional instead of -dimensional, but in not having a full
Euclidean structure. (Also in having some extra structure not present in
Euclidean -space.)
In the Newtonian case, the lack of a full Euclidean structure comes out

in two ways. First, there is no ‘objective’ way to compare spatial distance
with temporal distance; that is, although one could arbitrarily define such
a comparison (e.g. by saying that the spatial distance between two points
was equal to the temporal distance if the temporal distance was the same
as was required for a certain uniformly moving object in the Bureau of
Standards to traverse that spatial distance), nonetheless there is no one
such means of comparison that is naturally singled out by the laws of
Newtonian mechanics.
In order to explain the second way in which space-time lacks full

Euclidean structure, I must digress to discuss the issue of absolute rest.
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As I said in Chapter , I do not think that the notion of rest makes
objective sense in Newtonian mechanics: it makes sense only relative to
an arbitrary choice of coordinate system. Newton himself disagreed with
this conclusion: he thought that the notion of absolute rest (i.e. rest that
isn’t merely rest relative to a coordinate system) was required in order
to formulate the laws of mechanics, and consequently that it must make
objective sense. In support of the idea that the concept was needed to
formulate the laws of mechanics Newton produced his famous bucket
argument: this argument makes a strong case for the idea that you need
a notion of absolute acceleration to formulate the laws of mechanics,
and Newton thought that the only way to explain absolute acceleration
was in terms of absolute velocity, so that that must make objective sense
too. (And if absolute velocity makes objective sense, so of course does
absolute rest: something is at absolute rest if its absolute velocity is zero.)
This is certainly a persuasive argument for the claim that talk of absolute
rest makes objective physical sense. Nevertheless the conclusion of the
argument is undeniably embarrassing, for no one of the unaccelerated
frames is naturally singled out as the rest frame by the laws of the theory.
How are we to get around this embarrassing conclusion? One way of

course would be to change the physical theory, so that absolute accelera-
tion is not used: this wasMach’s program. But there is an alternativemove
which does not (in any very significant sense anyway) change the physical
theory, and that is to give a treatment of absolute acceleration which
doesn’t take it as defined in terms of a numerical velocity; this allows us to
have absolute acceleration without absolute rest. A platonistic treatment
of acceleration (using -dimensional tensor methods) that accords with
this idea is known, and is now popular with philosophers of physics.
(Cf. for instance the papers by Earman and Friedman cited in the previous
chapter.) In committing myself to the avoidance of arbitrary choices,
I committed myself to coming up with a nominalistic treatment with the
same virtue. (As I will later remark, I think that the nominalistic approach
does even better than the tensor approach in avoiding arbitrary choices.)
What does all this have to do with the structure of space-time? I said

above that there is no ‘objective’ way to compare spatial distance with
temporal distance. We can now see that in Newtonian mechanics there
is not even an ‘objective’ way to compare the spatial distance between
space-time points x and y with the spatial distance between z and w,
except in the case where x is simultaneous with y and z is simultaneous
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with w. To assume a more general comparison of spatial distance is to
assume a notion of sameness of place across time, i.e. a notion of absolute
rest; and this notion makes no objective sense in Newtonian mechanics.
(Again, sense can be given to the notion of rest, by arbitrary stipulation
of a rest frame; but no one rest frame is naturally singled out by the laws
of the theory.)
We’ve seen two respects in which space-time lacks full Euclidean struc-

ture. We must bear these facts in mind in trying to give an intrinsic
treatment of the geometry of space-time: we must describe space-time
geometry intrinsically without attributing to space-time any structure
that isn’t objectively there.
It turns out to be quite easy to give an intrinsic account of the geometry

of space-time, both for Newtonian mechanics and for special relativity,
by building on an intrinsic treatment of affine geometry that has been
provided by Szczerba and Tarski .
Before discussing this, let me first return to Hilbert’s representation

and uniqueness theorems. Hilbert actually proved more general repre-
sentation and uniqueness theorems than the ones stated in Chapter :
his theorems, in their full generality, invoke not distance functions, but
coordinate functions from which distance functions can be defined. The
more general theorems are as follows:

(RE) A structure 〈A, BetA, CongA〉 (where BetA ⊆ A×A×A and
CongA ⊆ A×A×A×A) is a model of the Hilbert axioms if and only
if there is a - function� fromA ontoR (the set of ordered triples of
real numbers) such that if we define d�(x, y) for x,y inA as

√
√
√
√

i=
∑

i=

(�i(x) − �i(y))

(where �i(x) is the ith component of the triple �(x)), then

(a) ∀x, y, z[y BetA xz ↔ d�(x, y) + d�(y, z) = d�(x, z)]
(b) ∀x, y, z,w[xy CongA zw ↔ d�(x, y) = d�(z,w)].

(UE) Given any model of the axiom system and any two functions
� and �′ whose domain is the domain of the model: if � meets
the conditions of the representation theorem (i.e. of (RE)), then �′
meets those conditions if and only if it has the form T ◦ �; where T
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is a Euclidean transformation of R, i.e. a transformation that can be
obtained by some combination of shift of origin, reflection, rotation of
axes, and multiplication of all coordinates by a positive constant (and
where ◦ indicates functional composition).

We can state the second result more briefly by saying that the representa-
tion function guaranteed by (RE) is unique up to Euclidean transformation
but no further. This result gives an explanation of the fact that the laws
of Euclidean geometry, when stated in terms of coordinates, are invari-
ant under shift of origin, reflection, rotation, and multiplication of all
distances by a constant factor: if we assume that the genuine facts about
Euclidean space are just the facts about betweenness and congruence laid
down in Hilbert’s axioms, and that the function of coordinates is simply
to facilitate the deduction of facts about betweenness and congruence and
the relations definable in terms of them, then it follows that in an extrinsic
formulation of the laws of geometry in terms of coordinates, the laws will
be invariant up to Euclidean transformations and no further.
What we would like is to do for space-time what has been done for

space. That is, we want to come up with a system of ‘intrinsic’ axioms,
more or less analogous to Hilbert’s but involving somewhat different con-
cepts, and to come up with a representation theorem that explains the
legitimacy of coordinatizing space-time and a uniqueness theorem that
explains why in the coordinatized treatment of space-time the laws of
Newtonian mechanics will be invariant under just the coordinate trans-
formations that they are in fact invariant under. Anyone with the least
familiarity with Newtonian mechanics knows what the relevant class of
transformations is: it is the class of generalized Galilean transformations,
that is, the class of transformations that can be obtained by some com-
bination of: (a) shift or origin; (b) reflection; (c) rotation of spatial axes
leaving the temporal axis fixed; (d) multiplication of all spatial coordi-
nates by a positive constant; (e) multiplication of all temporal coordinates
by a positive constant; and (f) change of rest frame according to the rule

t′ = t
x′ = x + ut
y′ = y
z′ = z

for some constant u. (Note the inclusion in this list of (d) and (e). The
advantage I mentioned which my approach has over tensor approaches
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is that these are included among the transformations under which the
theory is invariant.) So our uniqueness theorem for space-time is going
to have to say that the representation function � guaranteed by the rep-
resentation theorem is unique up to generalized Galilean transformation
and no further.
The key to developing a system of axioms from which one can prove

the needed representation and uniqueness theorems is to build on the
results of Szczerba andTarski on affine geometry. Szczerba andTarski laid
down an axiom system somewhat like Hilbert’s, but invoking only the
notion of betweenness. Their representation theorem for -dimensional
space was just like (RE), but with clause (b) dropped since no notion of
congruence was part of the system; to get the representation theorem for
-dimensional space you simply replace R by R and use

√
√
√
√

i=
∑

i=

(�i(x) − �i(y))

as your definition of d�(x, y). The uniqueness theorem for affine space
is like (UE), except that in place of Euclidean transformations is a
more general kind of transformation called affine transformations. Affine

 Of course, (d) and (e) will be included in the covariance group of Newtonianmechan-
ics on a tensor formulation, but that is irrelevant: so will lots of transformations that are
clearly not symmetries, i.e. under which the laws in their usual formulations are not invari-
ant. (For a good discussion of the conceptual distinction between symmetry and covariance,
see Friedman : ch. .)The reasonwhy tensor approaches leave (d) and (e) out of the class
of symmetries is that despite the fact that the main motivation of the tensor approach is to
eliminate the use of arbitrarily chosen coordinate systems in formulating the laws of physics,
it does not eliminate the use of arbitrarily chosen units of distance (or of arbitrarily chosen
units for scalar magnitudes generally).

 In particular, the axiom system I am referring to is a second-order axiom system, but
is interpretable nominalistically for the same reason thatHilbert’s is: cf. Chapter . (Szczerba
and Tarski also give a weaker first-order axiom system, but I am confiningmy attention here
to the second-order system for the reason stated near the end of Chapter .)

 Those used to tensor formulations might find the appearance of a distance function
in the context of affine space puzzling; after all, there is no uniquely defined metric in such
a space! But as I remarked on the previous page, there is no uniquely defined metric in
Euclidean geometry either, on an approach which (unlike the tensor approach) is fully
invariant. Even though there is no uniquely defined metric in either affine or Euclidean
geometry, it is legitimate to invoke a distance function in the representation theorem: for the
representation theorem is simply a device for invokingmathematics extrinsically, to simplify
calculations; and the distance function invoked in it is not invoked in the nominalistic
theory that serves as our intrinsic explanation. (The right-hand side of the representation
theorem for ‘Bet’ could also be formulated without invoking a distance function, but the
formulation in terms of distance is easier to state.)
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transformations preserve straight lines, and parallelism among lines, and
the betweenness relation among points on a line, and the congruence rela-
tion among points on the same line (or more generally, the congruence
or lack of congruence between x, y and z, w when x and y lie on a line
parallel to a line containing z andw); they don’t preserve perpendicularity,
or congruence generally.
Generalized Galilean transformations are a special case of affine trans-

formations. That they preserve straight lines, and betweenness on a line,
and so forth, is obvious for purely spatial lines, i.e. lines all of whose points
are simultaneous. How about for lines that are not purely spatial? It is easy
to see that in the usual coordinatization, a non-spatial straight line is sim-
ply the path of an inertial coordinate system, and inertiality is preserved
under generalizedGalilean transformations.The betweenness relation on
such a straight line has the obvious interpretation, and that relation too is
preserved under generalized Galilean transformations. Two non-spatial
straight lines are parallel if one is at rest relative to the other; and if x
and y are on one line and z and w on a parallel line, then xy is congruent
to zw if and only if the temporal separation between x and y is equal to
that between z and w. These relations too are preserved by generalized
Galilean transformations. So all generalized Galilean transformations are
affine transformations; the converse is not true, so what we want to
do is to add a few primitive notions and axioms to the Szczerba-Tarski
system, in such away that we get representation and uniqueness theorems
corresponding to the more restricted class of transformations.
The primitives we need, besides betweenness, are a two-place

simultaneity relation and a four-place spatial congruence relation, with
the property that xy S-Cong zw only if x is simultaneous to y and z is
simultaneous to w. Given that these are the primitives, it is clear what

 The preceding is a very redundant way to establish this: all we really need to check is
that betweenness (which requires collinearity) is preserved by generalized Galilean trans-
formations. But the redundancy is useful for giving an intuitive feeling for the significance
of the -dimensional geometric claims.

 I have not introduced a temporal congruence predicate, because it is definable from
betweenness and simultaneity (see (h) in this note). (The kind of spatial congruence relation
considered here would also be definable from betweenness alone, if there were only one
spatial dimension.) A good way to arrive at one’s choice of primitives is to look for a set of
primitives whose coordinate representations form a complete set of invariants for the class
of generalized Galilean transformations: that is (a) each primitive must have a coordinate
representation which is invariant under these transformations; and (b) for each transforma-
tion that isn’t a generalizedGalilean transformation, the coordinate representation of at least
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our representation theorem is going to have to look like: it is going to have
to be the -dimensional variant of (RE), except with clause (b) dropped
and the following two clauses added:

(c) ∀x, y[x Simul y ↔ �(x) = �(y)]
(d) ∀x, y, z,w[xy S-Cong zw ↔ �(x) = �(y) ∧ �(z) = �(w) ∧

d�(x, y) = d�(z,w)].
And our uniqueness theorem is going to have to say that the represen-
tation function satisfying this representation theorem is unique up to

one of the primitives must fail to be invariant under that transformation. If these conditions
were not met, the uniqueness theorem couldn’t possibly hold.
For later reference I will give some definitions:

(a) Coll (x, y, z), meaning intuitively that x, y, and z lie on a line, is defined as

y Bet xz∨ x Bet yz ∨ z Bet xy.

(b) Coll (x, y, z,w) is defined as

Coll (x, y, z) ∧ Coll (x, y,w) ∧ Coll (x, z,w) ∧ Coll (y, z,w).

(c) Coplan (x, y, z,w), meaning intuitively that x, y, z, and w lie on a plane, is defined as

∃u{[Coll (u, x, y) ∧ Coll (u, z,w)] ∨ [Coll (u, x, z) ∧ Coll (u, y,w)] ∨ [Coll (u, x,w)

∧ Coll (u, y, z)]}.

(d) Cohyp (x, y, z, v,w), meaning intuitively that x, y, z, v, and w lie on a -dimensional
hyper-plane, is defined as

∃u{[Coplan (u, x, y, z) ∧ Coll (u, v,w)] ∨ [Coplan (u, x, y, v) ∧ Coll (u, z,w)] ∨
[Coplan (u, x, y,w) ∧ Coll (u, z, v)]}.

(e) xy Par zw, meaning intuitively that x �= y and z �= w and the line passing through x
and y is parallel to (or identical to) the line passing through z and w, is defined to be

Coplan (x, y, z,w) ∧ ¬∃u[Coll (x, y, u) ∧ Coll (z,w, u)].

(f) Parallelogram (x, y, z,w), meaning intuitively that x, y, z, and w are vertices of a
parallelogram with x opposite z, is defined as

xy Par zw ∧ xw Par yz.

(g) xy Par-Cong zw, meaning intuitively that x and y are on a line parallel to a line
through z andw and the distance from x to y is equal to that from z tow, is defined as

(x = y ∧ z = w) ∨ ∃u, v[Parallelogram (x, y, u, v) ∧ (Parallelogram (z,w, u, v) ∨
Parallelogram (z,w, v, u))].

These are all affine-invariant notions, since they’re defined from betweenness alone. Now
using simultaneity as well, we can define temporal congruence:

(h) xy t-Cong zw is defined as

∃x′, y′, z′,w′[x Simul x′ ∧ y Simul y′ ∧ z Simul z′ ∧ w Simul w′ ∧ x′y′ Par-Cong
z′w′].
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generalized Galilean transformations but no further. Given the Szczerba-
Tarski axiom on ‘Bet’, it is quite trivial to impose requirements on the
two new primitives ‘Simul’ and ‘S-Cong’ so as to get the desired represen-
tation and uniqueness theorems.
The position that we arrive at, then, is that the only spatio-temporal

relations needed to describe Newtonian space-time are the three invoked
in this axiom system; all other genuine spatio-temporal relations are
defined in terms of them, and relations which on a coordinate descrip-
tion of space-time might look genuine—e.g. being at absolute rest, or
having a temporal separation of exactly , and so forth—really are not
genuine but dependent on an arbitrary choice of coordinate system or
distance function. By the representation theorem, the coordinate system
and the distance function can be viewed as merely devices for deriving
conclusions about spatio-temporal betweenness, simultaneity, and spatial
congruence, conclusions which could be derivedwithout ever bringing in
numbers at all.
Of course, the conclusions arrived at so far are rather limited: they

show the possibility of a nominalistic account of the structure of space-
time, but they do not show that when we use space-time to develop
broader theories (e.g. theories that describe the motion of particles by
differential equations, theories that postulate scalar fields governed by
other differential equations, and so forth), a nominalistic account of those
broader theories is possible too. Nevertheless, I think that this more gen-
eral conclusion is correct; and I will argue for it in the next two chapters,
by building on the ideas developed so far.

 The simultaneity axioms are:
(a) ∃a, b, c, d[a Simul b ∧ b Simul c ∧ c Simul d ∧ ¬Coplan (a, b, c, d)].
(b) ∀a, b, c, d[a Simul b ∧ b Simul c ∧ c Simul d ∧ ¬Coplan (a, b, c, d) → ∀x, y[x Simul

y ↔ x = y ∨ ∃e(e �= a ∧ xy Par ae ∧ Cohyp(a, b, c, d, e)]].
(Cf. the previous footnote for the definitions of ‘Coplan’ and ‘Cohyp’.) To axiomatize
S-Congruence, start with the usual congruence axioms that when added to the axioms
of -dimensional affine geometry give you a complete axiomatization of -dimensional
Euclidean geometry, and in each of these axioms restrict all variables so that all points
mentioned are required to be simultaneous with each other. These axioms, plus also

(a) xy S-Cong zw → x Simul y ∧ z Simul w
(b) xy S-Cong zw ↔ ∃z′,w′(xy S-Cong z′w′ ∧ x Simul z′ ∧ z′w′ Par-Cong zw),

where Par-congruence is as defined in the previous footnote, suffice for the desired repre-
sentation and uniqueness theorems. Doubtless there are more elegant axiomatizations of
‘S-Cong’ than this, but this one has the advantage of being obviously adequate.
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A Nominalistic Treatment
of Quantities, and a
Preview of a Nominalistic
Treatment of the Laws
InvolvingThem

I have described a nominalistic treatment of space-time; next we have to
deal with entities that exist within space-time, e.g. various scalar fields
such as temperature or gravitational potential.

A possible approach to a coordinate-independent treatment of,
say, temperature, would be to introduce a continuum of temperature
properties, each one the property of having such and such specific
temperature. One could then describe the structure of that system of
properties not via numbers, but via certain intrinsic relations among
them, say the relations of betweenness and congruence; and one could
impose axioms on these notions to guarantee that there was a – function
mapping the temperature properties into the reals, and that such a
function was unique up to linear transformation. There is a certain
conception of properties (that of Putnam ) on which this approach
would be at least arguably a nominalistic one; but I prefer a different
strategy, which doesn’t invoke temperature properties but which makes
do with space-time points (or more generally, space-time regions) as the
only entities.

My approach is not to introduce betweenness and congruence relations
among temperature properties, but to introduce temperature-betweenness
and temperature-congruence relations among space-time points. That
is, we will have a three-place relation Temp-Bet, with y Temp-Bet xz
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meaning intuitively that y is a space-time point at which the temperature
is (inclusively) between the temperatures of points x and z; and a four-
place relation Temp-Cong, with xy Temp-Cong zw meaning intuitively
that the temperature difference between points x and y is equal in absolute
value to the temperature difference between points z andw. Also, if we are
going to want to formulate laws which in their extrinsic formulations are
not invariant under temperature reversal (i.e. under a systematic replace-
ment of low temperatures by high temperatures and conversely), we will
need a two-place predicate Temp-Less, where x Temp-Less y means that
the point x is lower than or equal in temperature to point y. (When Temp-
Less is used, Temp-Bet of course becomes definable; but in order to make
most of the formal development independent of whether the laws are
invariant under reversal, it is convenient in the exposition that follows
to keep Temp-Bet as a primitive in either case.)

We now want to impose axioms on these relations, which will give us
representation and uniqueness theorems more or less analogous to the
Hilbert theorems (RE) and (UE) of the previous chapter. The theorems
we want are

(RTemp) A structure 〈A, Temp-BetA, Temp-CongA〉 or 〈A, Temp-
BetA, Temp-CongA, Temp-LessA〉 is a model of the axioms if and only
if there is a function� fromA onto an interval (connected subset with
more than one element) of real numbers, such that

(a) ∀x, y, z[y Temp-BetA xz ↔ either �(x) ≤ �(y) ≤ �(z) or
�(z) ≤ �(y) ≤ �(x)]

(b) ∀x, y, z,w[xy Temp-CongA zw ↔ |�(x) − �(y)| = |�(z) −
�(w)|],

and if Temp-Less is used as a primitive,

(c) ∀x, y[x Temp-LessA ↔�(x) ≤ �(y)].
(UTemp) Given anymodel of the axiom system and any two functions
� and � ′ whose domain is the domain of the model: if � meets the
conditions of (RTemp), then � ′ meets those conditions if and only if it
has the form P ◦ � ; where

if Temp-Less is not used as a primitive, P is a linear transformation
of the reals, i.e. a function of form ax + b where b is a real and a is a
non-zero real; and
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if Temp-Less is used as a primitive, P is a positive linear transforma-
tion, i.e. a linear transformation in which the constant a is greater
than zero.

Note that unlike the case of Euclidean geometry or the geometry of
space-time, we don’t demand that the representation functions be -, for
the obvious reason that different space-time points may have the same
temperature. Also, we don’t demand that the representation function be
the entire set of reals. We do demand that it be a connected set of reals,
for a simple reason: temperature and other scalar fields used in physics
are assumed to be continuous, and this guarantees that if point x has tem-
perature �(x) and point z has temperature �(z) and r is a real number
between �(x) and �(z), then there will be a point y spatio-temporally
between x and z such that�(y) = r. I have also demanded that the range
of� contain more than one real number, simply because doing so avoids
the need to worry about tedious special cases in stating definitions later
on, and because the case of a scalar with only one value is of no interest.

The task of getting an axiom system for Temp-Bet and Temp-Cong
and perhaps Temp-Less that will give rise to the desired representation
and uniqueness theorems is a problem that has in essence been solved
by others. There is in fact a large body of known results about how to
axiomatize something so as to get desired representation and uniqueness
theorems: these results form the major part of what is known as ‘the
theory of measurement’. This name reflects a philosophical bias quite
different frommine: it reflects a concern with something like operational
definitions, rather than with axiomatizing science without the use of
numbers. But ‘measurement theory’ has progressed largely by ignoring
characteristic features of measurement (such asmeasurement errors) and
focussing on such questions as: what must the intrinsic facts about tem-
perature differences between physical objects be if it is appropriate to
think of temperature as being represented by real numbers? And except
for the fact that I am substituting space-time points for physical objects,
this is in effect the question I am now asking.

An excellent survey of the kind of results now available in modern
measurement theory is given in Krantz, Luce, Suppes, and Tversky .
Many of the topics in that book are of some relevance to the project of
nominalizing physics; of immediate interest is the treatment they give
of ‘absolute difference structures’ in their section .. For their system
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is, in effect, an axiom system involving betweenness and congruence

which gives something very close to the representation and uniqueness
theorems for scalar fields like temperature that were required above. It
is quite easy to modify their system so as to give the representation
and uniqueness theorems we want, when Temp-Less is not used as a
primitive. And when Temp-Less is used as an additional primitive, it is
easy to add to the Krantz axioms some new axioms relating this to the
other primitives so as to again get the representation and uniqueness the-
orem we want; in fact an earlier section of the Krantz book, on ‘algebraic
difference structures’, shows in effect how this is to be done. For future

 Actually they use a single primitive, xy ≤ zw, meaning that the absolute value of the
scalar difference between x and y is less than or equal to the absolute value of the scalar
difference between z and w. But their system is convertible to one using betweenness and
congruence as primitives; or equivalently,my remarks could be easilymodified so as tomake
use of their primitive instead of betweenness and congruence.

 Two modifications of the Krantz axiomatizations are required. In the first place, the
Krantz system yields a representation theorem in which the range of the scalar function is
not required to be connected. But this is easy to fix: add an axiom saying that for any two
points x and z there is a third point y such that y Temp-Bet xz and xy Temp-Cong yz; and
replace the Archimedean axiom by a Dedekind continuity axiom. Since the Krantz system
already contains an axiom that allows subtraction (i.e. with the consequence that if r, r, r,
and r are in the range of the scalar and |r − r| < |r − r|, then there is an r in the range
of the scalar between r and r such that |r − r| = |r − r|), these modifications clearly
suffice for the range of the scalar to be connected.
The second modification that is required is due to the fact that their system leads to a

representation function which is -. However, it is easy to modify the system so that this
is not a consequence: instead of supposing that x Bet yy and ∃z(xy Cong zz) each imply
x = y, require only that x Bet yy ↔ ∃z(xy Cong zz), and that x Bet yy is an equivalence
relation, and that substitutivity of equivalents never affects betweenness or congruence.
This axiomatization (which is actually a bit redundant) obviously works, for the equivalence
classes satisfy the original axiom system, and a - representation function whose domain
is the set of equivalence classes induces a not-necessarily - representation function on the
space-time points themselves.
Incidentally, it may alleviate confusion to point out that my style of stating representation

theorems is different from that of Krantz et al. My representation theorems say that a
structure (of the appropriate type) is a model of such and such a theory if and only if there is
a representation function of such and such a sort; theirs say only if rather than if and only if,
and the statements of their theorems would be false if you replaced ‘only if ’ by ‘if and only
if ’ because of their use of what they call ‘non-necessary axioms’.The reason I have been able
to avoid ‘non-necessary axioms’, and hence make ‘if and only if ’ statements, is that I have
strengthened the system so as to require that the ranges of scalar functions be connected.
One of the virtues of the space-time approach to these matters is that it allows that.

 Simply add that Temp-Less is transitive and connected, and that

y Temp-Bet xz ↔ (x Temp-Less y ∧ y Temp-Less z) ∨ (z Temp-Less y ∧ y Temp-Less x).
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reference it will be convenient to have names for the axiom systems that
arise by modifying the Krantz axioms in these ways: I’ll call them the
axiom systems for unordered scalar fields and for ordered scalar fields.

Of course, nothing in all this turns on the scalar in question being
temperature, rather than gravitational potential or some other scalar. In
the future then, I will write ‘Scal-Bet’, ‘Scal-Cong’, etc. for the predicates,
to emphasize that we’re dealing with an arbitrary scalar. (In an actual
physical theory one might of course have more than one scalar; so there
will be different families of betweenness and congruence predicates, one
for each such scalar.This could be indicated in the notation by a subscript
on the prefix ‘Scal’, but I won’t bother to do so.) In order to distinguish
our spatio-temporal betweenness predicate from the scalar-betweenness
predicate(s), I’ll write the former as st-Bet.

If we now introduce a joint axiom system JAS that includes the spatio-
temporal primitives and the temperature (or other scalar) primitives
together, both defined on the same domain (which we think of as the
set of space-time points), and if we impose the appropriate axioms for
each, then for any model of the combined system there is both a -
spatio-temporal function � onto R

 and a scalar-representation func-
tion � onto an interval, each function unique up to (but only up to)
the appropriate class of transformations. Now, physical laws governing
a scalar like temperature or gravitational potential are often expressed as
laws about a scalar function T mapping quadruples of real numbers into
real numbers (the quadruples of reals in the domain representing space-
time location and the numbers in the range representing temperatures
or gravitational potentials or whatever). It should be clear that such a
function T is precisely � ◦ �− (see Figure ). This suggests that laws
about T (e.g. that it obeys such and such a differential equation) could be
restated as laws about the interrelation of � and �. And since � and �

are generated by the basic predicates Scal-Bet, Scal-Cong, st-Bet, Simul,
S-Cong, and perhaps Scal-Less, it is natural to suppose that the laws about
T could be further restated in terms of these latter predicates alone.

Of course, we can’t hope to express all properties of T in terms of
these five (or six) predicates: only those features of T that are invariant
under both generalized Galilean transformations of the spatio-temporal
coordinates and under linear (or positive linear) transformations of the
temperature scale could ever be so expressed. But that’s alright, for it is
only such invariant properties of T that are of any physical importance
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R

R4

Φ Ψ

T = Ψ  Φ–1°

Figure 

anyway. What we must hope, then, is that given some law (e.g. a differen-
tial equation) involving T, we can find some nominalistic formulation
involving our five (or six) basic predicates that gives the full invariant
content of the law.

In the next chapter I will show that in many cases—and, I suspect, in
all—it is indeed possible to do this. This will be the key to nominalizing
Newton’s theory of gravitation.

 Whether or not we use the sixth predicate depends on how invariant the law is
taken to be. Physical laws involving the gravitational potential are not in general invariant
under reflection, so we will need to invoke a predicate ‘Grav-Less’ in formulating physics
nominalistically; but in sketching the approach it is better to leave open the question of
whether there is a ‘less than’ primitive, so as to make the approach also apply to scalar fields
that enter only into laws that are invariant under reversal.
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Newtonian Gravitational
Theory Nominalized

A. Continuity
I will begin the illustration of the ideas of the paragraph before last by
a simpler example than a differential equation. Suppose we want to say
nominalistically that the scalar function T is a continuous function. In
‘saying this nominalistically’, we are not allowed to talk about T at all: T,
after all, is a function, and hence not a nominalistically admissible entity.
The sentence CONT which we will use to ‘say that T is continuous’ will
in fact quantify only over space-time points and space-time regions, and
will use only the basic predicates listed in the third from last paragraph
of the preceding chapter. We will prove

() For any model of the joint axiom system JAS for space-time and
the scalar quantity in question, and any representation functions �

and � (for space-time and the scalar quantity, respectively), the new
claim CONT is true in the model if and only if T (i.e. � ◦ �−) is a
continuous function.

This in effect will extend our representation theorem to the larger axiom
system that includes the new continuity claim CONT. The uniqueness
theorem will extend automatically, since the new continuity axiom will
involve only the basic predicates used in the original axiom system.
Such a nominalistic continuity axiom is easy enough to find. (The

following formulation of it quantifies over space-time regions. A formu-
lation quantifying over space-time points only is possible too, but I will
not bother to give it since regions appear to be needed later on anyway,
and since as already remarked there doesn’t seem to be much point in
denying the existence of regions while admitting the existence of points.)
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First a preliminary definition: define x ≈Scal y as x Scal-Bet yy; intu-
itively it means that x and y have the same temperature, or the same
gravitational potential, or the same value of whatever scalar quantity is
in question. Now call a region R scalar-basic (or temperature-basic or
gravitational-potential-basic, when we want to distinguish the scalar in
question from other scalars that will occur in the theory) if and only if
there are distinct points x and y such that either

(a) R contains precisely those points z such that z Scal-Bet xy and not
(z ≈Scal x) and not (z ≈Scal y) (cf. Figure (a)); or

(b) R contains precisely those points z such that y Scal-Bet xz and not
(z ≈Scal y) (cf. Figure (b)).

x R y x y R

Figure (a) Figure (b)

In terms of a representation function � for temperature, then, R is
temperature-basic if and only if either it consists of all points whose
temperature is exclusively between �(x) and �(y), or it consists of all
points whose temperature is greater than�(y), or it consists of all points
whose temperature is less than �(y). (So the temperature-basic regions
will correspond to the sets of space-time points that are �−-images
of basic open sets in the usual topology of the interval that is the
range of � . This correspondence will hold for any such representation
function � .)
We can similarly, using the notion of st-Bet, characterize the regions

of space-time that are spatio-temporally basic, i.e. that are mapped onto
basic open sets of R (say, interiors of tetrahedrons in R

) by any spatio-
temporal representation function �.
We then ‘say that T (i.e. � ◦ �−) is continuous at �(x)’ by say-

ing that for any temperature-basic region that contains x, there is a
spatio-temporally basic subregion that contains x; and we ‘say that T

 Temperature-basic sets may be mapped by � onto semi-closed sets of real numbers,
but only if the included end-point is the largest or smallest temperature value attained
anywhere throughout the whole space.
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is continuous’ by saying that this holds for every space-time point x.

This claimCONT ‘says thatT is continuous’ in the sense that for the claim,
() holds.
But in ‘saying that the scalar field is continuous’ we haven’t mentioned

any specific T (or any specific� or�): doing that would not only violate
nominalism, it would also involve a particular choice of coordinate sys-
tem for space-time and a particular choice of scale for temperature. Nor
have we ‘quantified over arbitrary choices’, i.e. talked about all functions
T that would result by making arbitrary choices of coordinate system and
of scale in one or another way. Rather, we have specified the continuity
of temperature with respect to space-time in a completely intrinsic way,
a way that never mentions spatio-temporal coordinates or temperature
scales. In my view this fully intrinsic character of the method makes it
very attractive even independently of nominalistic scruples.
The final thing to note about the treatment of the continuity of T

is that we made use only of the affine properties of space-time, i.e. of
the properties that depend only on the betweenness relation and not on
the simultaneity or spatial congruence relations. In most of the math-
ematical development to follow—e.g. in the nominalistic treatment of
differentiation—the same will be true. This is important, for it will mean
that these developments can be carried over without any change at all
to physical theories that do not postulate a Newtonian space-time but
postulate some other space-time with a (flat, globallyR) affine structure
instead; e.g., these developments will go over without alteration to the
special theory of relativity. (Some of the other mathematical develop-
ments which do involve aspects of Newtonian space-time other than its
affine properties—e.g. the treatment of gradients and Laplacians—will
also go over to special relativity with very little change; and I believe that
without too much trouble all the mathematical developments to follow
could be generalized to space-time with a more general sort of affine
structure than considered here (i.e. space-times which don’t obey all the
Szczerba-Tarski axioms and indeed which require amore complicated set
of primitives), such as the space-time of general relativity. See the last
paragraph of note .) Analogously, the above treatment of continuity

 Observe that the basic idea of this approach to continuity is to use two topologies on
the same set (the set of space-time points), rather than topologies on two different sets that
are related by a function. That is the secret of how quantifying over functions is avoided.
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does not rely on the primitive ‘Scal-Less’, and againwewill dowithout that
predicate in our mathematical development, for the sake of generality,
whenever possible.

B. Products and Ratios
Before dealing with differentiation proper, we must deal with the com-
parison of products or ratios. For instance, suppose we want to say nom-
inalistically that the result of multiplying a certain pair of intervals is less
than the result of multiplying a certain other pair of intervals. Obviously
there is no hope of saying this nominalistically unless certain conditions
on units are met. For instance, there is no hope of saying nominalistically
that the result of multiplying two spatio-temporal intervals is less than
the result of multiplying two temperature intervals, for the truth of such
a statement would depend on the choice of a temperature scale and of
spatio-temporal coordinates, and in a nominalistic treatment (of the sort
being proposed here) only invariant statements are possible.What we can
hope to say is that the result of multiplying one spatio-temporal interval
with one temperature interval is less than the result ofmultiplying another
spatio-temporal interval with another temperature interval. At least, we
can hope to say this if the two spatio-temporal intervals are themselves
objectively comparable; and they will be (in any affine space) when both
lie on the same straight line. What we want then is a nominalistic state-
ment with eight free variables, which we may abbreviate suggestively as

() |xxyy| <st,Scal |uuvv|,
such that for any choice of a spatio-temporal representation function
� and a scalar representation function� , we can prove the biconditional

 Although in the treatment of continuity we also avoided Scal-Cong, it is not in general
possible to do much without Scal-Cong. Scal-Cong, unlike spatial congruence, is an affine
notion: that is, although in two or more dimensions the affine properties of space (which
include the Par-congruence relation of note ) are definable in terms of betweenness, this
isn’t true in one dimension; and in one dimension there is no distinction between the
affine notion of Par-congruence and the most general congruence relation. So for a one-
dimensional structure like temperature, congruence is an affine notion, and there is no way
to avoid it in developing calculus.

 Or on parallel lines; but for simplicity I confine myself to intervals on the same line.
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() |xxyy| <st,Scal |uuvv| if and only if x, x, u, and u lie on
a single line and d�(x , x) · |�(y) − �(y)| < d�(u, u) · |�(v) −
�(v)|.

Here d�, is the spatio-temporal distance function
√
√
√
√

i=
∑

i=

(�i(x) − �i(y)).

Note that although d� is highly non-invariant under affine transforma-
tions of the spatio-temporal coordinate system, the right-hand side of ()
in which it appears is invariant under affine transformations; so this is
one of those cases where we ought to expect that we won’t need non-
affine-invariant notions in the definition of () (i.e. we ought to expect
that we not only won’t need to use ‘d�’ in the definition of (), we won’t
need ‘Simul’ or ‘S-Cong’ either). Similarly, since the right-hand side of
() is invariant under all linear transformations of the �-scale (not just
the positive linear transformations), this is one of those cases where we
should hope to do without use of the predicate ‘Scal-Less’ in the defini-
tion. So we want to be able to give a nominalistic definition of () that
meets these additional constraints, and such that the biconditional ()
is provable.
This task is easily carried out, if we allow ourselves sufficient logical

machinery. First we define a spatio-temporally equally spaced region (see
Figure ) as a region R all of whose points lie on a single line, and such
that for every point x of R which lies strictly st-between two points of R,
there are points y and z of R such that

(a) exactly one point of R is strictly st-between y and z, and this point
is x; and

(b) xy Par-Cong xz.

x
y

z

R

Figure 
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(Par-congruence, i.e. congruence along parallel lines, is defined in note
.) My definition allows equally spaced regions to be infinite as well as
finite; however, it is really only the finite ones we need.
The notion of a region equally spaced in temperature is analogous,

except that st-betweenness is replaced throughout by temperature-
betweenness and Par-congruence by temperature-congruence. (The
requirement that all points of the region lie on a single line can
be dropped; for the claim that results from this when temperature-
betweenness is substituted for st-betweenness in the definition of lying on
a single line is vacuous, since the temperature-ordering is -dimensional.)
Given this, we can define () as follows (see Figure ):

() u �= u and not (v ≈Scal v); and
if x �= x and not (y ≈Scal y), then there are Rst and RScal

such that

(i) Rst is an st-equally-spaced region containing x and x;
(ii) RScal is a scalar-equally-spaced region containing y and y;
(iii) there are a, b in Rst such that u and u are st-between a and b,

and there are c, d in RScal such that v and v are Scal-between
c and d;

(iv) there are just as many points of Rst that are st-between x and
x as there are points of RScal that are Scal-between v and v;
and

(v) there are fewer points of RScal that are Scal-between y and y
than there are points of Rst that are st-between u and u.

y1

y
2

c

Rscal

d

a x
1

b x
2

u
1

R
st

u
2

v1

v
2

Figure 
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All the notions in this definition are affine-invariant, and if we define ()
by () then it is routine to prove the required representation theorem
(). (The question may be raised whether our definition () is genuinely
nominalistic, due to the cardinality comparisons that occur in it; I defer
this issue until Chapter .)
We also need to define a relation |xxyy| >st,scal |uuvv| with a

representation theorem like () but with ‘<’ replaced by ‘>’, but obviously
this can be done analogously. And given ‘<st,Scal’ and ‘>st,Scal’, ‘=st,Scal’
can be defined in terms of them in the obvious way.
Finally, I note for later use that the definition of one product being less

than (or greater than, etc.) another can be straightforwardly generalized
to the case where the products are of more than two factors. For instance,
we can define by means quite analogous to () a formula

 We can assume that x, x, u, and u all lie on a single line, and that x �= x, u �= u,
not y ≈Scal y, and not v ≈Scal v; for when these conditions aren’t met, it is clear that
biconditional () holds. Let rx and ru be d�(x , x) and d�(u, u) respectively, and let ry
and rv be |�(y) − �(y)| and |�(v) − �(v)| respectively. Let Rst and RScal be regions
meeting all the conditions in () except possibly the last. Let Nx be the number of points
in Rst (inclusively) between x and x, and define Nu , Ny , and Nv similarly (using RScal in
place of Rst for Ny and Nv); since we’re assuming that x �= x and not y ≈Scal y, Nx and
Ny are at least . Finally, let μ� be the �-distance between adjacent points of Rst , and μ�

be the absolute difference between the �-values of Scal-adjacent points in RScal . Then

(Nx − )μ� = rx
(Ny − )μ� = ry
(Nu − )μ� ≤ ru < (Nu + )μ�

(Nv − )μ� ≤ rv < (Nv + )μ�

Also Nx = Nv . We need: (a) that if Ny < Nu , then rxry < rurv ; and conversely (b) that if
rxry < rurv then for some choice of Rst and RScal meeting the conditions, Ny < Nu .
To prove these, note that the indented inequalities give

(Nu − )(Nv − )
(Nx − )(Ny − )

≤ rurv
rxry

<
(Nu + )(Nv + )
(Nx − )(Ny − )

which together with Nx = Nv gives

Nu − 
Ny − 

≤ rurv
rxry

<

(
Nu − 
Ny − 

+ 
Ny − 

)(

 + 
Nx − 

)

.

The left-most inequality here establishes (a). For (b), note that as we decrease the spacing
between the points of Rst , we increaseNx ; and then to keep Nx = Nv wemust also decrease
the spacing between points of RScal , and so Ny must increase too.We see that by decreasing
the spacing between the points of Rst and holding Nx = Nv fixed, we can get the right-
hand side of the inequality arbitrarily close to Nu−

Ny− . So if
ru rv
rx ry > , then we can see that

for sufficiently fine-meshed Rst and RScal ,
Nu−
Ny− >  also; so Nu > Ny , establishing (b).



OUP CORRECTED PROOF – FINAL, //, SPi

 gravitational theory nominalized

(′) |xxyyzz| <st,st,Scal |uuvvww|
for which we can prove that for any representation functions� and� for
space-time and our scalar respectively, the bi-conditional

(′) |xxyyzz| <st,st,Scal |uuvvww| if and only if:
x, x, u, and u all lie on a line, and y, y, v, and v all lie on
(the same or another) line, and
d�(x, x) · d�(y, y) · |�(z) − �(z)| < d�(u, u) · d�(v, v) ·
|�(w) − �(w)|.

C. Signed Products and Ratios
So far we’ve been talking of products of absolute values, but amore general
kind of product comparison is also useful (even when we are dealing
with unordered scalar fields). Platonistically, these new product compar-
isons are most easily made if we introduce a new kind of representation
function. Suppose we are talking about points on a single line L. Our
old coordinatization � of space assigns points of R to points of L; let’s
introduce a new coordinatization �L that assigns real numbers to points
of L, and that is ‘compatible with’ the old one � in the sense that for any
points x and y on L, |�L(x) − �L(y)| = d�(x, y).The choice of such a�L
is to some extent arbitrary: it is arbitrary which point of L is assigned ,
and which direction along L is the direction of increasing �L values. So
our only interest in relations expressed using�L is in those relations that
do not depend on these arbitrary choices (in addition to not depending

 The generalization of () is:
u �= u ∧ v �= v ∧ not(w ≈Scal w), and
if x �= x ∧ y �= y ∧ not(z ≈Scal z), then there are Rst , R′

st and RScal such that:
(i) Rst and R′

st are st-equally-spaced regions and RScal is a scalar-equally-spaced
region;

(ii) x and x are in Rst , y and y are in R′
st , and z and z are in RScal ;

(iii) there are a, b in Rst such that u and u are st-between a and b, and there are c, d
in R′

st such that v and v are st-between c and d, and there are e, f in RScal such
that w and w are Scal-between e and f ;

(iv) there are just asmany points ofRst between x and x as ofR′
st between v and v;

(v) there are just as many points of R′
st between y and y as of RScal between w and

w; and
(vi) there are fewer points of RScal between z and z than of Rst between u and u.
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on the arbitrary choice of a particular � or �). One such relation is the
following:

() (�L(x) − �L(x)) · (�(y) − �(y)) is exclusively between
(�L(s)−�L(s)) · (�(t)−�(t)) and (�L(u)−�L(u)) · (�(v) −
�(v)).

Here we are expressing not a comparison of products of absolute values
of spatio-temporal intervals and scalar intervals, but a comparison of
signed products of oriented spatio-temporal intervals and oriented scalar
intervals. It is however a comparison that is invariant under choice of
the orientations of � and of �L. What we now have to do is express
this comparison nominalistically and without ever introducing arbitrary
orientations.
More precisely, then, what we want to do is to nominalistically define

a predicate

() (xxyy) E-Betst,Scal (sstt)(uuvv)

for which we can prove a representation theorem that says that () holds
if and only if the points x, x, s, s, u and u all lie on a single line L,
and for any representation functions � and � and any coordinatization
�L of L compatible with �, () holds.
To define () it is useful to first define two other notions: first, xx

Pos-Par uu, meaning intuitively that the line-segment from x to x is
parallel to and pointing in the same direction as the line-segment from u
to u (with x �= x and u �= u); second, yy Pos-Orient vv, meaning
intuitively that�(y) − �(y) and�(v) − �(v) are non-zero and have
the same sign. Both these relations are easy to define nominalistically (and
we don’t need ‘Scal-Less’ to define the latter). Given these relations, one
can define an eight-place relation xxyy Same-Sign uuvv as:

Either xx Pos-Par uu and yy Pos-Orient vv,
or xx Pos-Par uu and yy Pos-Orient vv.

In the case when x, x, u and u lie on a single line L, this relation will
hold if and only if (�L(x) − �L(x))(�(y) − �(y)) and (�L(u) −
�L(u))(�(v) − �(v)) are non-zero and have the same sign. We also
define xxyy Opp-Sign uuvv as xxyy Same-Sign uuvv. One
can now define () in terms of the simpler kind of product comparison in
the preceding section, as follows:
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x, x, u, u, s, and s all lie on a single line;
and if x = x or y ≈Scal y then sstt Opp-Sign uuvv;
and if x �= x and not(y ≈Scal y) then one of the following three
conditions holds:

(a) sstt Same-Sign xxyy, and uuvv Same-Sign xxyy,
and either |sstt| <st,Scal |xxyy| <st,Scal |uuvv| or
|uuvv| <st,Scal |xxyy| <st,Scal |sstt|;

(b) sstt Same-Sign xxyy, and not (uuvv Same-Sign
xxyy), and |xxyy| <st,Scal |sstt|;

(c) not (sstt Same-Sign xxyy), and uuvv Same-Sign
xxyy, and |xxyy| <st,Scal |uuvv|.

The desired representation theorem connecting () so defined with () is
now easily provable.
() shows how to define one signed product being between two others.

One can similarly definewhat it is for one signed product to equal another
signed product. Finally, one can extend this result to signed products of
three or more factors: e.g. in analogy to (′) and (′) at the very end of the
previous section, we can define a formula

(xxyyzz) = st,st,Scal(uuvvww)

which holds if and only if x, x, u, and u are all on a line L, and y , y,
v, and v are all on a line L′, and

(�L(x) − �L(x))(�L′(y)−�L′(y))(�(z)−�(z)) = (�L(u) −
�L(u))(�L′(v) − �L′(v))(�(w) − �(w)).

D. Derivatives
Now that such product comparisons are at hand, we can deal with the dif-
ferentiability properties of our scalar functionT (=� ◦ �−). Suppose for
instance that we want to say something about the existence of the partial
derivatives of T at a given point, and the values of these partial derivatives
there.We can’t actually say that the partial derivatives have certain values,
for this is not an invariant statement: it depends on the directions of the
spatial and temporal axes, and the scale units for space, time, and temper-
ature. So the first step is to find away of stating the invariant content of the
claim that the partial derivatives have such and such values. The secret is
to ask not about the values of the partial derivatives, but for comparisons
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of the directional derivatives with the temperature intervals. That is, the
statement

() the directional derivative of T(=� ◦ �−) with respect to the
vector �(a) − �(a) exists at �(x) and has a value there equal to
�(b) − �(b)

is invariant under generalized Galilean (in fact, affine) transformations of
� andunder linear transformations of� , so it is suitable as the right-hand
side of a representation theorem; let us then try to ‘say it nominalistically’,
i.e. find a statement that can be the left-hand side of the representation
theorem.
There is one rather annoying complication in giving a ‘nominalistic

definition’ of (), and that is that we may have inconveniently chosen a
point b which has either the highest or the lowest temperature of any
point in the universe. So that we can save this complication for the end,
let (∗) be the conjunction of () with the assertion that ∃c∃d (b is strictly
Scal-between c and d); we first give a ‘nominalistic definition’ of (∗),
and then show how it can be used to obtain a ‘nominalistic definition’
of ().
The idea of the nominalistic definition of (∗) is as follows. Take any

two points c and d, on opposite sides of b but as close to b as one likes.
Then (∗) says that there should be points y and z on opposite sides of x on
a line L through x that is parallel to the line through a and a, such that if
you choose representation functions � and � and a coordinate function
�L for L that is compatible with�, then for all points t on L other than x
that are between y and z,

�(t) − �(x)

�L(t) − �L(x)
(�L(a) − �L(a))

is exclusively between �(c) − �(b) and �(d) − �(b), i.e. is within a
small amount of�(b) − �(b). This is clearly what the usual platonistic
explanation of (∗) amounts to.
Putting this more formally, and inserting both a clause to cover the

case where a = a (which was implicitly excluded in giving the intuitive
idea) and a clause asserting our temporary assumption about the non-
extremality of b, we get

(∗) ∃c∃d (b is strictly Scal-between c and d), and if a = a then
b ≈Scal b, and if a �= a then:
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∀c∀d (if b is strictly Scal-between c and d then there are points y and
z such that yz Par aa and x is strictly st-between y and z, and for
all points t other than x that are strictly st-between y and z, (aaxt)
E-Betst,Scal (xtbc)(xtbd).

(yz Par aa means that the line segment yz is parallel to aa with y �= z
and a �= a. It is defined in terms of st-Bet in note .)The previous para-
graph shouldmake it clear that (∗) is an adequate nominalistic definition
of (∗): that is, it should be clear that it is platonistically provable that for
any model of the joint axiom system and any representation functions �

and � , (∗) holds in the model if and only if (∗) is true.
What then are we to do if we want to nominalistically define not (∗)

but ()? One possibility is to recall that by cutting the size of a vector in
half you cut the directional derivativewith respect to that vector in half, so
that if a is on the line from a to a and halfway between them, and if b is
midway in temperature between b and b, then the directional derivative
with respect to �(a) − �(a) will equal �(b) − �(b) if and only if
the directional derivative with respect to�(a) − �(a) equals�(b) −
�(b). And what follows the ‘if and only if ’ is explicated nominalistically
by (∗), for the point b is guaranteed to be strictly Scal-between two other
points, namely b and b. At least, this is guaranteedwhen it is not the case
that b ≈Scal b; taking account of the possibility that b ≈Scal b as well,
the above remarks give us the nominalistic definition of ():

() Either b ≈Scal b and ∃b{(∗) with b and b replaced by b}, or
not(b ≈Scal b) and ∃a∃b[a st-Bet aa and aa Par-Cong aa and
bb Scal-Cong bb and {(∗) with b replaced by b}].

(Par-Cong is defined in note .) This is an adequate nominalistic defini-
tion of (). Let us abbreviate it as D(x, a, a, b, b).
The readermay object that a nominalistic definition of () isn’t enough:

for since the range of our scalar may not exhaust the real numbers, it may
happen that the directional derivative ofT with respect to�(a) − �(a)
exists at �(x) but is too big to be represented in the form �(b) −
�(b). Actually, however, this causes no problem. For the directional
derivative with respect to a vector exists at a point if and only if the
directional derivative with respect to a shortened vector pointing in
the same direction exists at that point; and by shortening sufficiently
much, we can always get the value of the directional derivative to be as
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small as some actual temperature-difference. So, to say that the direc-
tional derivative with respect to �(a) − �(a) exists at �(x), we need
merely say that ∃a′

∃c∃d[a′
 st-Bet aa and (if a �= a then a′

 �= a)
and D(x, a, a′

, c, d)]. This doesn’t enable us to equate the value of the
directional derivative with respect to �(a) − �(a) to any actual tem-
perature difference, but we never need to do that: we can always make do
with stating the value of the directional derivative with respect to some
smaller parallel vector,�(a′

) − �(a), since cutting the size of the vector
by some fraction always cuts the size of the directional derivative by the
same fraction.
We can not only express the existence of the partial derivatives of T at a

point �(x), but we can also express the differentiability of T at �(x) (i.e.
the existence of a linear transformation that approximates T at�(x)): the
intuitive idea is that T is differentiable at �(x) if and only if

(a) for each a and a, the directional derivative of T with respect to
�(a) − �(a) exists at �(x);

(b) for each a, a, a, a that form a parallelogram with a opposite
a, and such that a, a, and a are all close enough to a so that the val-
ues of the directional derivatives of T with respect to �(a) − �(a),
�(a) − �(a), and�(a) − �(a) are all within the range of the tem-
perature scale: the directional derivativewith respect to�(a) − �(a)
is the sum of the directional derivatives with respect to�(a) − �(a)
and �(a) − �(a).

It should be clear how to express this nominalistically given what has
already been said.

E. Second (and Higher) Derivatives
Second derivatives of scalar fields are also no difficulty: wemerely need to
express the result of taking a first derivative bymeans of betweenness and
congruence predicates, and apply the whole process again. (And we can
reiterate still further to get third andhigher derivatives.)More specifically,
suppose we define D-Bet(a, a; x, y, z) as:

∃a′
, b, c, d, e[a

′
 st-Bet aa ∧ (a �= a → a′

 �= a) ∧ D(x, a, a′
, b, c)

∧ D(y, a, a′
, b, d) ∧ D(z, a, a′

, b, e) ∧ c Scal-Bet de];
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this says that the directional derivative of T with respect to �(a) −
�(a) at �(x) is between the directional derivatives with respect to the
same vector at �(y) and �(z). (a′

 is invoked to avoid the difficulties
raised in the next to last paragraph of the preceding section.) Suppose
we also define D-Cong(a, a; x, y, z,w) as:

∃a′
, b, c, d, e, f [a

′
 st-Bet aa ∧ (a �= a → a′

 �= a) ∧ D(x, a, a′
,

b, c) ∧ D(y, a, a′
, d, c) ∧ {(D(w, a, a′

, b, e) ∧ D(z, a, a′
, d, e)) ∨

(D(w, a, a′
, e, b) ∧ D(z, a, a′

, e, d))}];
this says (see Figure ) that if we take the directional derivative of T
with respect to �(a) − �(a) at x, y, z, and w, the absolute value of the
difference between this derivative at x and at y equals the absolute value
of the difference between the derivatives at z and at w.

derivative at y

derivative at x

c

b

e

d

derivative
at w

derivative
at z

Result of subtracting
derivative at x from
derivative at y is equal
in absolute value to result
of subtracting derivative
at z from derivative at w

(All derivatives are directional derivatives with

respect to a vector  a
1
a′

2
 which points in the

direction of  a
1
a

2
 but may be shorter)

Figure 

Finally, if the original system was an ordered scalar field, we can define
D-Less (a, a; x, y) as:

∃a′
, b, c, d[a′

 st-Bet aa ∧ (a �= a → a′
 �= a)∧ D(x, a, a′

, b, c) ∧
D(y, a, a′

, b, d) ∧ c Scal-Less d].

Then for any fixed a and a the predicates D-Cong (a,a; x,y,z,w) and
D-Bet (a,a; x,y,z) satisfy the axiom system for an unordered scalar field;
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and if the original system was an ordered scalar field, then D-Cong,
D-Bet, and D-Less obey the axiom system for an ordered scalar field.
Consequently, we can think of these predicates as representing (for fixed
a and a) a scalar function, and differentiate with respect to a new
vector �(a) − �(a) as before. In doing so we get a new formula
E(x, a, a, a, a, y, z), with the representation theorem that (for any rep-
resentation functions� and�) this holds if and only if the second direc-
tional derivative of� ◦ �− with respect to�(a) − �(a) and�(a) −
�(a) in that order exists at �(x) and has a value there equal to that of
the first directional derivative of� ◦ �− with respect to�(a) − �(a)
at z minus the same first directional derivative at y.
Then the claim

∃y, z, c[E(x, a, a, a, a, y, z) ∧ D(y, a, a, c, b) ∧ D(z, a, a, c, b)]

is sufficient for the second directional derivative with respect to �(a) −
�(a) and �(a) − �(a) in that order to exist at�(x) and have a value
there equal to �(b) − �(b). Though sufficient, it isn’t quite necessary,
because of the fact that the range of the first derivative might not be big
enough; but again it is a boring exercise to use linearity of derivatives to
provide an emendation that is necessary and sufficient. Call this emended
versionD()(x, a, a, a, a, b, b).This is the desired formula for second
directional derivatives; we can also express the existence of the second
derivative as a bilinear operator (which will entail that we don’t have to
worry about the order of the vectors �(a) − �(a) and�(a) − �(a)
in taking second directional derivatives) by the same method used to get
the first derivative as a linear operator.

 This section should suggest to those familiar with tensor methods something about
how the nominalistic treatment of covector and cotensor fields and their differentiation
is going to work (in the flat affine space-time we’ve been discussing). In flat space-time a
contra-vector is represented as simply a pair of points, and covector and cotensor fields are
treated by predicates that have slots to be filled by contra-vectors. In a general treatment one
will represent a cotensor field of rank n by a betweenness predicate, a congruence predicate,
and perhaps also a ‘less than or equal to’ predicate (depending on whether one needs order
or not): these will have (n + ), (n + ), and (n + ) places respectively, where each
of the (n + )-place units represent the endpoints of n contravectors plus a point at which
the field is being evaluated. (In dealing with differentiation it wasn’t necessary to use all
of these places, because of the fact that the cotensor resulted from an independently given
scalar field.)
In developing gravitational theory nominalistically it is possible to take as one’s primitive a

predicate representing the gravitational field intensity covector, rather than the gravitational
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F. Laplaceans
If we now particularize the discussion from arbitrary affine
-dimensional space-times to the Newtonian space-time considered
earlier, we can make statements about the Laplacean of a given scalar
field. For example, we can say that the Laplacean at a point x exists and
is zero: to say this is to say that the field is twice differentiable at x and
(see Figure ) that there is an st-basic region R containing x such that

for all a, b, c in R that are simultaneous to x, if xa, xb, and xc all have the
same length and are pairwise orthogonal, then there are points d, e, and
f such that:

the second directional derivative with respect to �(a) − �(x) taken
twice (i.e. with respect to �(a) − �(x) and �(a) − �(x)) is equal to
�(e) − �(d);

the second directional derivative with respect to �(b) − �(x) taken
twice is equal to �(f ) − �(e); and

the second directional derivative with respect to �(c) − �(x) taken
twice is equal to �(d) − �(f ).

(Orthogonality for purely spatial vectors, i.e. vectors whose endpoints are
simultaneous, is definable in terms of the spatial congruence relation.)
This explains the claim that the Laplacean is zero in terms of other

claims that we have already seen how to express nominalistically (and
without appeal to any non-invariant notions).

potential scalar. This is in fact a more natural approach in some respects, but though it isn’t
ultimately any more complicated than the approach given here, it seemed to me that the
approach given here would be conceptually less demanding as an introduction to the kind
of nominalistic methods I’m using.
I believe that the ideas here are extendible to curved space-time. One natural approach to

doing this would be to take contravectors at a point as geodesic segments emanating from
that point and contained in a convex normal neighborhood of that point. (See pp. – of
Hawking and Ellis  for a definition of a convex normal neighborhood, and a sketch of
a proof that every point of a manifold lies in such neighborhoods and that within any such
neighborhood there is a natural diffeomorphism between geodesic segments on the one
hand and contravectors characterized in terms of a tangent space on the other.) Cotensors
would then be treated by predicates of contravectors, in themanner of two paragraphs back;
contratensors of rank greater than  need not be treated directly, since the effect of them can
be gotten by ‘index raising’ which can be done by the method of section I of this chapter.
It ought to be possible, by a parallel transport predicate, to describe space-time curvature
and to develop differential geometry. It is not however a trivial task to work out the details
of this, for the whole construction would have to be based on a representation theorem of a
more complicated kind than any I have seen.

 R is invoked to keep the second directional derivatives small enough.
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Figure 

We can also say that the ratio of the Laplacean at x to the Laplacean
at x′ is equal to the ratio of the difference in scalar values between p
and q to the difference in scalar values between p′ and q′: we simply say
(cf. Figure ) that there are a, b, c simultaneous to x, and a′, b′, and c′
simultaneous to x′, such that xa, xb, xc x′a′, x′b′, and x′c′ all have the
same length, and that the first three are pairwise orthogonal and the last
three are too, and such that for some t, u, t′, u′:

(a) the second directional derivative at x with respect to�(a) − �(x)

taken twice is �(t) − �(q); with respect to �(b) − �(x) taken
twice is�(u) − �(t); andwith respect to�(c) − �(x) taken twice
is �(p) − �(u);

(b) the same as (a) but using primed points (a′, x′, t′, p′, etc.).

 I interpret this and other ratio statements as merely a convenient abbreviation of the
corresponding product statement: i.e.

α

β
= γ

δ

simply abbreviates

αδ = βγ .

This convention about the meaning of ratio statements enables us to avoid boring qualifica-
tions about the cases where β =  or δ = .
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(Again I have stated this in a platonistic way, using �, � , etc.; but I have
used these platonistic devices only in contexts that we have already seen
how to nominalize.)
Finally, if we are dealing with an ordered scalar field, then we can say

that the Laplacean has a value less than or equal to zero at x, by an obvious
modification of how we said that it had value zero at x.
We can alsomake slightlymore complicated invariant statements about

the Laplacean nominalistically and without appeal to non-invariant enti-
ties, but the three statements described above will suffice for Newtonian
gravitational theory.

G. Poisson’s Equation
By the Newtonian theory of gravitation I mean the theory of motion
for an arbitrary particle, assuming that the only forces acting on the
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particle are gravitational forces. Given the space-time framework, which
I have already shown how to handle nominalistically, the Newtonian the-
ory of gravitation can be stated in two laws: a field equation governing
a certain scalar field (the gravitational potential), and an equation of
motion. The field equation is Poisson’s equation, which says that at any
point the Laplacean of the gravitational potential is proportional to the
mass-density at that point, the proportionality constant being negative.
(The absolute value of the proportionality constant has no invariant sig-
nificance within this theory: to give it significance you have to impose
independent constraints on the mass scale and on the scales of other
quantities.)
For the moment let’s forget about the requirement that the proportion-

ality constant be negative, and require only that it be non-zero. Then the
field equation can be restated as the conjunction of two claims:

(a) at any point the Laplacean of the gravitational potential is zero
if and only if the mass density at that point is zero;
(b) at any two points at which the mass density is not zero, the ratio
of the Laplaceans of the gravitational potential is equal to the ratio of
the mass-densities.

Obviously the preceding discussion gives us most of the machinery
required for saying this. All that is missing is that I haven’t yet talked
about the proper way to treat mass-density. Mass-density is a scalar field
of a rather special sort: a symptom of the special nature of this field is
that its scale is ‘less arbitrary’ than the scale for gravitational potential,
i.e. it is a ratio scale (or a log-interval scale) rather than an interval
scale. The special nature of the scale means that a proper axiomatiza-
tion of mass-density would involve a more complicated set of primitives
and axioms than the ones suggested above for scalar fields generally.
Nonetheless, the primitive used above for ordered scalar fields would be
included among or definable from the primitives used in the more com-
plicated treatment, and the axioms alluded to above for ordered scalar
fields would be included among or derivable from the axioms in themore
complicated treatment. Another thing definable from the primitives is
the notion of having a mass-density of zero; and if we assume that there

 For a discussion of log-interval scales and of why density should be regarded as a
log-interval scale rather than a ratio-scale, see Krantz et al. : –, –.
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are points of mass-density zero, we can avoid having to consider the
details of the proper treatment of the mass-density scale in nominalizing
Poisson’s equation. For then we can express the density ratio between
points x and y as a ratio between the density differences ρ(x) − ρ(z) and
ρ(y) − ρ(z), where z is a point at which the mass-density is zero; and
we can compare ratios of density differences with ratios of differences in
gravitational potentials, by the device used earlier to compare the latter
ratio with ratios of oriented spatio-temporal intervals on a line in section
C of this chapter. Since our invariant treatment of the Laplacean gives us
a way to compare ratios of Laplaceans of the gravitational potential with
ratios of differences of gravitational potential, we can put these things
together to compare ratios of Laplaceans to ratios of densities. That is,
roughly (i.e. ignoring complications arising from the possible finiteness of
the gravitational potential scale, which we know by now how to handle),
(b) is equivalent to:

for any points x and x′ and any point z at which themass density is zero
and any points p, q, p′, and q′:

ρ(x) − ρ(z)
ρ(x′) − ρ(z)

= �(q) − �(p)

�(q′) − �(p′)

if and only if

the Laplacean of � ◦ �− at x
the Laplacean of � ◦ �− at x′ = �(q) − �(p)

�(q′) − �(p′)
;

and all the notions appearing in this are ones we have previously seen
how to define nominalistically. The appeal to points at which the density
is zero in this treatment is a bit inelegant, but it can be avoided on a fuller
treatment that takes more seriously the fact that density has a ratio (or
more accurately, log-interval) scale.

 On the fuller treatment we can state and prove that for any points a and b there are
points c, d, e, and f such that the ratio of the mass at a to the mass at b equals the ratio of
the difference in mass between c and d to the difference in mass between e and f . (Using the
ratio convention of note , and also the (obviously true) assumption that the mass density
is not the same at each point. If for some reason one wants to avoid that assumption, the
case of uniform mass density can be treated as a separate case.) The assumption in the text
that there are points at which the mass density is zero is really just a simple way of getting
this result.
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The only thing that remains to be done in treating Poisson’s equation
is to express the fact that the proportionality constant in the equation is
negative. Here for the first time we must use the primitive ‘Scal-Less’, for
Poisson’s equation is not invariant under reversal of signs of the gravita-
tional potential: a world in which Poisson’s equation held with a positive
proportionality constant would be a world where objects had more grav-
itational potential energy at the surface of the earth than on a mountain
top. It is clear, however, that the fact that the constant is negative amounts
merely to the fact that

(c) the Laplacean of the gravitational potential is always less than or
equal to zero,

and we’ve already seen how to express this. So the nominalization of
Poisson’s equation is complete.

H. Inner Products
It now remains only to give nominalistically the law ofmotion for Newto-
nian gravitational theory: this says that the acceleration of a point-particle
subject only to gravitational forces is at each point on the particle’s trajec-
tory equal to the gradient of the gravitational potential at that point.The
invariant content of this law is exhausted by the claim that the gradient is
proportional to the acceleration, with a positive proportionality constant
that is the same for all trajectories. (It is usual to use a proportionality
constant of , but this simply reflects an arbitrary choice of scale for the
gravitational potential, relative to scales for spatial distance and for time.)
To state the law nominalistically, we first need to be able to compare

ratios of inner products of purely spatial vectors with ratios of scalar
differences (where a purely spatial vector is one whose endpoints are
simultaneous). But doing this is easy, given what we’ve done so far: first,
given four simultaneous points x, x, y, and y (cf. Figure (a)) let z be
chosen so that −→xz is parallel to −→yy, and points in the same direction as
it, and has the same length as it; and let z be the point at which the per-
pendicular to the line xx through z meets xx. (If x = x, so that ‘the

 Point-particles are presumably an idealization, and an idealization that gives rise to
some difficulties; but these difficulties arise on the usual platonistic field-theoretic formula-
tions of physics too, and hence don’t seem specially relevant to the issue of nominalism.
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line xx’ isn’t unique, it won’t matter where you take z.) All this is nom-
inalistically describable, of course. If z is x or x is x, the inner product
of−−→xx and−→yy is zero; if x is strictly between x and z, the inner prod-
uct is negative; otherwise, the inner product is positive. Similarly, given
simultaneous points x′

, x′
, y′

, and y′
, we can construct z′

 in a similar
way, and again its location determines the sign of the inner product.
So much for the signs of the inner products −−→xx · −→yy and

−−→
x′
x

′
 ·−→

y′
y

′
; now how about about their magnitudes? Intuitively, the ratio of the

magnitudes of the absolute values of these inner products is equal to the
length of xx times the length of xz divided by the length of x′

x
′
 times

the length of x′
z

′
. But this intuitive idea has to be put nominalistically. To

do so, we first make a copy of the triple 〈x′
, x

′
, z

′
〉 on the line through x,

x, and z (see Figure (b)): let x′′
 , x

′′
 , and z′′

 be on the same line as x, x,
and z, with x′′

 x′′
 S-Cong x′

x
′
 and x′′

 z′′
 S-Cong x′

z
′
 and x′′

z′′
 S-Cong

x′
z′

. (Spatial congruence makes sense in this context, since x′
, x′

, and
z′
 are all simultaneous and so are x′′

 , x′′
 , and z′′

 .) Now suppose u, u,
u′
, and u′

 are four further points (not necessarily simultaneous) at which
we are interested in a scalar property like gravitational potential. Then to
say that

−−→xx · −−→yy−−−→
x′
x′

 · −−→
y′
y

′


= �(u) − �(u)
�(u′

) − �(u′
)

(where the dots indicate inner product, and the convention on ratio-
statements stated in note  is in force), is simply to say that

(�L(x)−�L(x))(�L(z)−�L(x))(�(u′
)−�(u′

)) =
(�L(x′′

)−�L(x′′
))(�L(z′′

) − �L((x′′
))(�(u) − �(u))

(where �L is a coordinatization of the line L that’s compatible with �,
and x, x, z, x′′

 , x′′
 , and z′′

 all reside on L); and we saw how to say this
nominalistically at the end of section C.
To bemore precise, the above sketch shows how to state a formula gov-

erned by the representation theorem that for any � and � , the formula
holds if and only if

() −−→xx, −→yy,
−−→
x′
x

′
 and

−→
y′
y

′
 are purely spatial vectors, and

−−→xx · −−→yy−−−→
x′
x′

 · −−→
y′
y

′


= �(u) − �(u)
�(u′

) − �(u′
)



OUP CORRECTED PROOF – FINAL, //, SPi

 gravitational theory nominalized

I. Gradients
The availability of the notion of inner product ratios in Newtonian space-
time allows us to associate with each ‘ratio of derivative operators’ a ‘ratio
of vectors’: namely, the ‘ratio’ of the gradient vectors that correspond to
the derivative operators. (This then is the analog of ‘index raising’ in
tensor analysis.) To be more precise, observe that since we can express
(), we can also express

() −−→xx, −→yy,
−−→
x′
x

′
 and

−→
y′
y

′
 are purely spatial, and

−−→xx · −−→yy−−−→
x′
x′

 · −−→
y′
y

′


is equal to the ratio of the directional derivative of� ◦ �− with respect
to −→yy at z to the directional derivative of � ◦ �− with respect to−→
y′
y

′
 at z′;

for we knowhow to nominalistically compare directional derivatives with
scalar-difference ratios like

�(u) − �(u)
�(u′

) − �(u′
)

and sowe can certainly compare ratios of directional derivativeswith such
scalar-difference ratios. But then we can say that () holds for all purely
spatial vectors −→yy and

−→
y′
y

′
; and this is in effect to say

() there is a real number k such that −−→xx is k times the gradient of
� ◦ �− at z and

−−→
x′
x

′
 is k times the gradient of � ◦ �− at z′.

We would also like to be able to say that () holds with some positive
proportionality constant k. Call this claim (′). To say this, we simply add
to the nominalistic definition of () the further claim that for all purely
spatial vectors−→yy , the inner product−−→xx and−→yy at z is positive if and
only if the directional derivative with respect to −→yy at z is positive, and
analogously for

−−→
x′
x

′
 and z′. (This involves a second use of the relation

‘less than in gravitational potential’.)

 This requires a bit of care because of the fact that the range of the scalar may be a finite
interval, but as usual the difficulty is resolved by cutting the size of the vectors with respect
to which the directional derivatives are taken.
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J. Differentiation of Vector Fields
(′) is the key to a nominalistic understanding of the right-hand side of
the law of motion; we now have to deal with the left-hand side, which
involves the notion of the acceleration of a point particle. Until now, the
ontology of the theory has included only space-time regions; now we
are invoking new entities, viz. point particles, and to go with them we
will need a new primitive predicate, that of a point-particle occupying a
space-time point. From this we can define the notion of the trajectory of a
particle: it is the region consisting of all space-time points that the particle
ever occupies.

An implicit presupposition of the law ofmotion is that the trajectory of
each point particle is a region that is connected in the st-topology given
in section A of this chapter and which contains no two simultaneous
points. I will call any such region of space-time (whether there is a particle
there or not) trajectory-like.Themost important trajectory-like regions to
consider, aside from actual trajectories, are those straight lines in space-
time that are not purely spatial: as Newton’s bucket argument more or
less shows, such lines must play a crucial role in formulating the law of
motion.
In formulating the law of motion, it is necessary to speak of the

spatial separation between trajectory-like regions, and first and second
derivatives of this spatial separation. Since the spatial separation between
trajectory-like regions is in effect a vector—it has direction as well as
magnitude—we need to extend the treatment of differentiation in section
D to vector fields.

More particularly, let S and T be any two trajectory-like regions. It is
useful heuristically to think of them as ‘defining a vector field’ as follows:
for any point x, regard the vector field as being defined at x if and only
if both S and T contain points simultaneous to x; and regard the value of
the field there as the vector whose initial point and terminal points are

 Actually, the only use of either particles or the notion of occupation in the theory is
in defining the notion of trajectory. Consequently, one could if one liked avoid explicitly
introducing particles, and take ‘trajectory’ instead of ‘occupies’ as primitive. I don’t claim
any philosophical significance for this; I note it only because it allows a slight technical
simplification of the discussion in the next chapter.

 Contravariant vector fields, that is. Covariant vector fields have in effect been dealt
with earlier: cf. note .
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the points of S and T respectively that are simultaneous to x. Let a and
a be any points. (In the cases of interest for this particular vector field,
they will not be simultaneous.) What can be said, invariantly, about the
value of the directional derivative of this vector field at x with respect
to the vector −−→aa? Well, directional derivatives of scalar fields could be
objectively equated with differences of scalars, so you would expect that
directional derivatives of vector fields could be objectively equated with
differences of vectors. But a difference of vectors is itself a vector. What
we should expect, then, is that we could define nominalistically a formula
D-Vec(x, a, a, b, b), meaning intuitively that at x the directional
derivative of the spatial separation of T from S with respect to −−→aa exists
and is equal to the spatial separation of b from b: we ought to be able
to define this without assigning a number to the length of the spatial
separation, or to anything else.
Doing this involves only a fairly straightforward generalization of what

was done in section D; in fact, in some ways the definition of vector
differentiation needed here is easier than the definition of scalar dif-
ferentiation given there, since space-time unlike the range of tempera-
ture or gravitational potential is being assumed to be infinite in extent,
so there’s no need for all the fancy footwork involving the linearity of
derivatives which the possibility of finiteness forced on us. But there are
also some additional complications in the vector case. We proceed as
follows.
In analogy with section Cwe can easily define a predicate (xyzw) =st,st

(rstu) expressing the equality of signed products of distances on two
distinct lines, i.e. the equality of (�L(y) − �L(x)) · (�L′(w) − �L′(z))
and (�L(s) − �L(r)) · (�L′(u) − �L′(t)) where x, y, r and s all lie on
a single line L and the other points all lie on a single line L′. It’s easy
to generalize this to a predicate (xyzw) =par

st,st (rstu) where xy is merely
required to be parallel to rs, and zw to be parallel to tu. A simple way
to do this is to let Parallelogram∗(x, y, z,w) mean that x, y, z, and w
either are the vertices of a parallelogram with x opposite z, or they are
the vertices of a limiting case of a parallelogram, that is, either x = y and
z = w or x = w and z = y. Then (xyzw) =par

st,st (rstu) can be defined (see
Figure ) as: there are points s′ and u′ such that Parallelogram∗(x, s′, s, r)
and Parallelogram∗(z, u′, u, t) and (xyzw) =st,st (xs′zu′).
We are now ready to defineD-Vec (x, a, a, b , b). Let px and qx be the

points on S and T respectively that are simultaneous with x. (As remarked



OUP CORRECTED PROOF – FINAL, //, SPi

differentiation of vector fields 

r

s

x
s′

y
z

w

u′

u

t

Figure 

S

q
x
 is simultaneous with p

x
 and r,

but need not be in the p
x
-p

t
-q

t
-r plane

b
3

b
2

b
1

U

T

p
t

p
x

q
x

r

q
t

z

y

x

t

a
2

a1

Figure 

above, there must be such for the vector field we’re interested in to be
defined at x.) Then D-Vec (x, a, a, b, b) comes to this (see Figure ):

If a = a then b = b; and if a �= a then ∀U[if U is an st-basic
region containing b, then there are y and z such that:
(a) yz Par aa;
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(b) x is strictly st-between y and z; and
(c) for any t other than x that is strictly st-between y and z, there is

a point r such that Parallelogram∗ (px, pt, qt , r) and a point b in
U such that (xtbb) = par

st,st(aaqxr).

The last clause says in effect that if−→xt is h times−−→aa for some real number
h, then −→qxr (which is the change in spatial separation in passing from
x to t) is h times

−−→
bb, and hence is ‘close to’ the vector h · −−→bb. It is

easy to see that if D-Vec(x, a, a, b, b) then b and b are simultaneous,
which is what you’d expect since the endpoints of the spatial separation
vector are always simultaneous; also, it is easy to see that when in addition
a is simultaneous to a then b = b, which again is what you’d expect
since the spatial separation vector has the same value at all simultaneous
points.
Observe that the derivative of a vector field with respect to a fixed vec-

tor is again a vector field; consequently we can immediately differentiate
again with respect to the same or a different vector. Second and higher
derivatives are thus a bit easier for vectors than for scalars, where it took
a bit of work to put the result of taking the first derivative into the same
format as the scalar field that we had started with.

K. The Law of Motion
The law of motion can now be stated in any of a variety of ways. Perhaps
the most natural is to introduce the concept of a tangent to a trajectory
(or a trajectory-like region) at a point: a tangent to a trajectory T at a
point z is a straight line S through z, such that the directional derivative
of the spatial separation between T and S with respect to any vector exists
and is zero at z. The tangent to T at z is unique if it exists. Let us call a
trajectory (or trajectory-like region) differentiable at z if it has a tangent
at z and this tangent is not purely spatial.We can now take the preliminary
part of the law of motion to consist in the claim that the trajectory of any
point particle is both trajectory-like (in the sense defined in section J) and
differentiable.
Themain part of the law of motion requires that we compare the accel-

erations of points on the same or different trajectories with the gradients
of the gravitational potential at those points. Let T and T′ be any tra-
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jectories, and let z and z′ be any points on them. Let S and S′ be the
tangents to T and T′ at z and z′ respectively, and let y and y′ be points
on S and S′ such that −→zy and

−→
z′y′ are temporally congruent and have

the same temporal orientation. The law of motion is then simply that
(for any such T, T′, z, z′, S, S′, y, and y′) there is a positive real number
k such that:

(a) the second directional derivative of the spatial separation of S from
T at z with respect to −→zy taken twice is k times the gradient of the
gravitational potential at z; and

(b) the seconddirectional derivative of the spatial separation of S′ from
T′ at z′ with respect to

−→
z′y′ taken twice is k times the gradient of the

gravitational potential at z′.

But the previous two sections show how to say this: it is simply a mat-
ter of plugging the appropriate second directional derivatives into (′).
So the nominalistic formulation of the law of motion is complete, and
this together with our previous nominalization of Poisson’s equation
gives us a complete nominalistic formulation of Newtonian gravitational
theory.

L. General Remarks
Let us review the strategy we have followed. We started out by giving
a joint axiom system containing axioms for space-time, axioms for the
gravitational potential, and (though we didn’t mention them until later)
axioms for mass-density. We then proved that for any model of this
joint axiom system, there would be a – function � from the domain
of the model (i.e. the space-time points) onto R

, and two functions �

and ρ from the domain into the reals, all satisfying certain homomor-
phism conditions. We then showed that there were further nominalistic
statements expressible using the primitives of the joint axiom system
(together with the notion of a particle occupying a point) such that if
these further nominalistic statements were true in the model then the
usual platonistic formulation of Newton’s theory of gravitation would
come out true (taking � to be the spatio-temporal coordinate function,
� the gravitational potential function, and ρ the mass-density function).
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So the nominalistic formulation of the physical theory in conjunction
with standardmathematics yields the usual platonistic formulation of the
theory; and conversely, the nominalistic formulation is a consequence
of the platonistic formulation, given standard mathematics. From this it
follows that any statement in the proposed nominalistic language that is a
consequence of the platonistic axioms and standardmathematics is a con-
sequence of the nominalistic axioms unaided by mathematics: for as we
saw earlier in thismonograph,mathematics when applied to nominalistic
axiom systems does not yield any nominalistically statable conclusions
you couldn’t get otherwise. So the nominalistic formulation of physics
and the platonistic formulation have precisely the same nominalistically
statable consequences; and so mathematical entities are theoretically dis-
pensable in the theory of gravitation.
I would like to conclude this chapter by saying that the nominalistic for-

mulation of gravitational theory proposed here is not as complicated as it
may look; ormore accurately, that though it is complicated, that is because
platonistic physics is complicated too, though it may be presented simply
once we have explained a lot of platonistic apparatus (such as gradients,
Laplaceans, and so forth). Most of what I have spent time doing in this
chapter is to develop a nominalistic version of that complicated platonistic
apparatus; and I doubt that my development of that is very much more
complicated than the development of the analogous platonistic apparatus.
Also, most of what I’ve developed is quite general: e.g. the treatment of
differentiation in section D works for arbitrary functions from one affine
space to another; and the treatment of gradients, Laplaceans, and inner
products works for an arbitrary affine space on which there is a congru-
ence relation defined, or which has distinguished subspaces (e.g. in the
Newtonian example the -dimensional subspaces produced by factoring
by the simultaneity relation) on which a congruence relation is defined.
Once the development of this apparatus is complete, the laws of New-
tonian gravitational theory can be presented very quickly in terms of it;
again, probably almost as simply as they are presented on a platonistic
approach. I believe that the reader who works through this material at all
carefully will soon convince himself that this is so.
I do not of course claim that the nominalistic concepts are anywhere

near as convenient to work in solving problems or performing compu-
tations: for these purposes, the usual numerical apparatus is a practical
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necessity. But it is a necessity that the nominalist has no need to forgo: he
can treat the apparatus in the way suggested earlier in the book, i.e. as a
useful instrument for making deductions from the nominalistic system
that is ultimately of interest; an instrument which yields no conclusions
not obtainable without it, but which yields them more easily.
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Logic and Ontology

In this final chapter I want to deal with worries that the readermight have
as to whether the version of physics presented here is genuinely nomi-
nalistic. Some of these worries, about my realist attitude toward space-
time, seem to me entirely misguided; I have discussed this matter early in
Chapter .The remainingworry, which I takemuchmore seriously, stems
from the fact that there are two respects in which I have overstepped the
bounds of first-order logic.The fact that I have overstepped these bounds
raises two questions:

(a) What are the prospects for making do with first-order logic?
(b) If the prospects are poor, what impact will this have on

nominalism?

Although I strongly suspect that one can make do with first-order logic
in developing gravitational theory nominalistically, proving this would
involve much more work than proving the adequacy of the second-order
nominalistic system considered in previous chapters. Consequently I will
begin by considering question (b). Afterwards, I will say a little bit about
question (a), for this question is of interest whatever the answer to (b).

The two respects in which I have overstepped the bounds of first-order
logic are:

(i) that in axiomatizing the geometry of space-time and the scalar
orderings of space-time points, I have invoked what I called in
Chapter  ‘the complete logic of the part/whole relation’ or ‘the
complete logic of Goodmanian sums’; and

(ii) that in comparing products of intervals in section B of Chapter ,
I have invoked the binary quantifier ‘fewer than’.

Now strictly speaking, we do not really need (ii) in addition to (i):
the logic of Goodmanian sums is sufficient to give us the cardinality
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comparisonswe need aswell as the representation theoremswe need. (See
note .) But I think that for a variety of reasons it is heuristically advan-
tageous to keep the use of extra logic in making cardinality comparisons
separate from the use of extra logic in giving representation theorems,
so I will put no weight on the fact that one can make the cardinality
comparisons one needs using only the logic of Goodmanian sums.

I
Let us introduce the symbol F for the binary quantifier ‘fewer than’: that
is, let ‘[Apple (x)] Fx [Orange (x)]’ mean ‘there are fewer apples than
oranges’. Now, if we think of the full ‘fewer than’ quantifier as making
discriminations among infinite cardinalities (e.g. as such that ‘there are
fewer points than regions’ is true), then there is no need to invoke the
full ‘fewer than’ quantifier in our theory: we can invoke a slightly weaker
quantifier F  which makes no distinction between infinite cardinalities.
(Thus ‘[Apple (x)] Fx [Orange (x)]’ and ‘[Apple (x)] Fx [Orange (x)]’
have the same truth-value if there are only finitely many oranges; and if
there are infinitely many oranges then even if the number of oranges is
uncountable, ‘[Apple (x)]Fx [Orange (x)]’ is true if and only if there are
only finitely many apples.) In the future, I will use only the quantifierF,
and will use the term ‘fewer than’ in accordance with the meaning of F
rather than with F on those occasions where it matters.

It will turn out actually that in Newtonian gravitational theory, if we
add a new predicate to the theory then the ‘fewer than’ quantifier can
very easily be dispensed with in favor of a still simpler quantifier, the
binary quantifier ‘∃fin ’ meaning ‘there are only finitely many’ (i.e. ‘∃finx
Apple (x)’ means ‘there are only finitely many apples’). So it is really this
quantifier that raises the issues of whether cardinality comparisons like
those made in section B of Chapter  are nominalistically legitimate.

The first point I want tomake is that use of the ‘finitelymany’ quantifier
does not seem pretheoretically to involve one in ontological cornmit-
ments to abstract entities. If I assert or deny that there are only finitely
many grains of sand, this appears to involve no commitment whatever to
abstract entities, just as it appears to involve no commitment to abstract
entities to assert or deny that there are less than  grains of sand. With
regard to assertions or denials that there are less than  grains of sand,
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three attitudes are possible. First one could say that ∃< (and/or its denial
∃≥) is simply a part of logic, as are ∃≥, ∃≥, etc.: on this view, logic
includes not only first-order logic, but the recursive set of axioms for
∃≥, ∃≥, etc. given in Chapter . Second, one could say that despite
appearances, ‘there are at least  grains of sand’ does involve ontological
commitments to abstract entities: for, onemight say, what it means is that
there is a – function from the set {, , . . . , } into the set of all grains of
sand, and hence involves a commitment to functions, numbers, and sets
as well as grains of sand. This view is quite implausible—e.g. it makes the
sentence ‘There are at least  grains of sand, but there are no numbers,
functions or sets’ inconsistent! Intuitively, the claim about the – function
seems intimately related to the ‘there are at least ’ claim—it is what I’ve
called an abstract counterpart of the claim—but though intimately related,
the claims are distinct. The third possible view is that the ‘there are at
least ’ claim is equivalent in meaning to a claim in first-order logic with
identity. As a view about meaning this isn’t really very plausible; but on
the first view too ‘there are at least  grains of sand’ is logically equivalent
to a claim in first-order logic with identity, so unless we are very hung
up on meaning then the third view and the first do not seem importantly
different in this case.

Now let’s consider the claim ‘there are only finitelymany grains of sand’,
or its denial. Here one can not take the third of the lines used for ‘there are
fewer than  grains of sand’ or its denial: the claim about finitude cannot
be identified (even up to logical equivalence) with a claim in first-order
logic plus identity. But the first line is still possible: we can take ‘there are
only finitelymany’ as a primitive quantifier, just as we could take ‘there are
at most ’ as primitive. Admittedly, doing this has some consequences
that are not entirely attractive: if we take this as a quantifier and also define
logical consequences à la Tarski , then the consequence relation is
neither compact nor recursively enumerable. But the only alternative to
taking ‘there are only finitely many’ as a primitive quantifier (one we
might or might not elect to use in our theories) seems to be to say that

 A truth theory for a language containing ‘∃fin ’ would of course have to use the notion
of finiteness. But that is no objection to the clarity of ‘∃fin ’ or the legitimacy of regarding it
as logical, anymore than the fact that the clause in a truth theory for the standard existential
quantifier uses the notion of existence shows that that quantifier isn’t clear or isn’t part
of logic.
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despite all appearances ‘there are infinitely many grains of sand’ commits
you to the existence of functions, numbers, and sets as well as grains of
sand; i.e. that it is equivalent in meaning to (rather than merely, has as
its abstract counterpart) the claim ‘there is a – function from the set of
natural numbers to the set of grains of sand’. Surely this is implausible, for
surely it is consistent to maintain that there are infinitely many grains of
sand but no numbers of functions or sets.

I have argued that use of the quantifier ‘there are only finitely many’
or its negation does not necessarily involve commitment to abstract enti-
ties; and the same could of course be said for the ‘fewer than’ quantifier.
Analogously, I argued in Chapter  that to use the complete logic of
Goodmanian sums in one’s theories does not necessarily involve commit-
ment to abstract entities. In all these cases however, the question remains
whether it might not be better to replace the theory that invokes the extra
logic by another theory that invokes abstract entities but does without the
extra logic.

That is exactly what the first-order platonist advocates doing. By a
first-order platonist I mean someone who accepts theories that postulate
abstract entities, but doesn’t accept any logic beyond first-order logic.
Such a first-order platonist has no resources at his disposal with the power
of cardinality quantifiers like ‘there are only finitely many F’s’ or ‘there
are fewer F’s than G’s’. For instance, whatever non-logical vocabulary
he introduces and whatever consistent and recursively axiomatized (or
recursively enumerably axiomatized) set T of axioms he asserts involving
this vocabulary, there will be truths involving the cardinality quantifier
that (when translated into the language of T) do not follow from T; and
even if we were to give up the restriction that T must be recursively
axiomatized (or recursively enumerably axiomatized), there will be valid

 I have shifted from ‘there are only finitely many grains of sand’ to ‘there are infinitely
many grains of sand’ simply because the sense in which the abstract counterpart of the
former is ontologically committed to functions etc. is less obvious than the sense in which
the abstract counterpart of the latter is (since the abstract counterpart of the former is a
denial of an existence-claim about functions). (There is however still a clear sense in which
the abstract counterpart of the former commits one to functions etc.: only in the context
of a theory that asserted the existence of lots of functions could the claim about the non-
existence of a – function from the set of natural numbers to the set of grains of sand serve
as an abstract counterpart of the claim that there are infinitely many grains of sand.) When
I use the quantifier ‘there are only finitely many’ in the comparison of products, it is to assert
finitude, not to assert infinitude.
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inferences involving the cardinality quantifier that (when translated into
the language of T) are not validated by T. But this does not disturb the
first-order platonist: the first-order platonist rests content with a recur-
sively axiomatized theory—say, first-order set theory—in which we can
translate the cardinality quantifier in such a way that an important part of
its content is captured. (The same translation into second-order set theory
would give the full content of the cardinality quantifier; but of course
second-order set theory has a non-compact and non-recursively enumer-
able logic, so using a translation of the cardinality quantifier into this
theory would be no gain.) We know by experience that the platonistic
first-order weakening of the cardinality quantifier suffices for physics. (It
suffices for classical mathematics, which in turn suffices for physics.) So
the first-order platonist has a method for doing without cardinality quan-
tifiers in physics and replacing them by weaker set-theoretic surrogates in
a compact and recursively enumerable logic.

This way of looking at things reinforces the point I made earlier, that
use of the cardinality quantifier isn’t platonistic, what’s platonistic is only
a certain set-theoretic surrogate for the cardinality quantifier. But it also
shows a prima facie advantage of platonism: if we do use the first-order
set-theoretic surrogate for the cardinality quantifier (and a similar first-
order set-theoretic surrogate for the logic of Goodmanian sums), then we
canmake do in our theorizingwith a compact and recursively enumerable
fragment of logic. And isn’t that an advantage?

Imust admit that I think that it is an advantage. Consequently, I think it
would be highly desirable to show that the nominalist too can do without
the cardinality quantifier and the complete logic of Goodmanian sums,
and can make do instead with weaker surrogates in a compact and recur-
sively enumerable logic. I’m inclined to think in fact that this claim is
true, and will give some considerations in support of this shortly; but
I don’t believe that the claim can be proved without a great deal of work

 I say that an inference is validated by a theory T if the conclusion of the inference
follows from the premises of the inference together with the premises of T.

 The reason that the translation into first-order set theory doesn’t give the full content
of the cardinality quantifier is that there are models of first-order set theory that aren’t mod-
els of second-order set theory—viz. the non-standard models of first-order set theory—and
in many of these non-standard models an infinite set can satisfy the set-theoretic formula
which ‘says that’ it is finite.



OUP CORRECTED PROOF – FINAL, //, SPi

logic and ontology 

(which I haven’t done), so the question arises, what if it isn’t true? Would
nominalism thereby be defeated?

To this I think the answer is no. For although there are certainly advan-
tages to using only a compact and recursively axiomatized fragment of
logic in developing physics, there are also advantages to keeping one’s
ontological commitments to aminimum; and the situation that we would
be in (on the assumption that nominalism can’t be made to work without
going beyond first-order logic) is that we would have to make a choice as
to which of two desirable goals is more important. It seems to me that
the methodology to employ in making such decisions is a holist one:
we should be guided by considerations of simplicity and attractiveness
of overall theory. It seems totally unreasonable to insist on sticking to
the requirement that logic be kept compact and recursively enumerable,
whatever the costs for ontology; it is the simplicitly of the overall concep-
tual scheme that ought to count (as Einstein pointed out long ago against
those who thought that the simplicity of Euclidean geometry should lead
us to stick to it come what may).

Admittedly this does not settle the issue of whether one should be a
nominalist in the case at hand—the case where you can maintain nomi-
nalism by using a cardinality quantifier together with the complete logic
of Goodmanian sums but (we are supposing) can’t maintain nominalism
with a weaker logic. All I’ve said is that one must look to overall theory
to decide. My own view is that even if we are ultimately forced to make
this decision—that is, even if it turns out that there is no reasonable way
for the nominalist to make do with first-order logic—then nominalism
is the reasonable position. For in the first place, the broader logics under
consideration have their attractive aspects as well as their drawbacks.

 The analogy here is not perfect: after all, Einsteinwas proposing a revision of geometry
in the sense that some of the formerly held geometric claims were to be given up; whereas
in the present case we are not considering a revision of logic in this sense, but merely an
expansion of what counts as logic. Since, however, expansions are less radical than revisions,
it is all the more inappropriate to resist expansions if such expansions will simplify one’s
total theory.
Note that I do not claim that logic is always to be expanded to keep down ontology. If the

only way to nominalize the Newtonian theory of gravitation were to introduce a ‘quantifier’
Q such that QxF(x)meant that there is something which is F and which is part of a universe
that obeys the laws of Newtonian gravitational theory, then I would certainly conclude that
Quine’s argument for platonism was successful.

 See for instance Montague , and the last two paragraphs of this chapter.
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And in the second place (and more importantly) the use of this fairly
small amount of extra logic saves us from having to believe in a large
realm of otherwise gratuitous entities, entities which are very unlike the
other entities we believe in (due for instance to their causal isolation from
us and from everything we experience), and which give rise to substantial
philosophical perplexities because of these differences. In this situation,
to insist on sticking to first-order logic because it is compact and recur-
sively enumerable seems to me a bit like insisting on sticking to monadic
logic because it is decidable.

II
I will now say something about the question of how good the prospects
are for making do with first-order logic. We have seen in earlier chapters
how to give a nominalistic theory N in a broader logic that is an adequate
nominalistic formulation of theNewtonian theory of gravitation; it seems
reasonable then, in looking for a first-order nominalistic theory of gravi-
tation, to look at first-order subtheories of N.

It should be noted at the outset that there is a quite uninteresting way
to get a first-order subtheory of N with precisely the same first-order
sentences (i.e. sentences not containing the cardinality quantifier or any
second-order quantifiers) as consequences that N has as consequences:
simply take as axioms all the first-order sentences that follow from N.
This, however, is a bit reminiscent of the idea of dispensing with elec-
trons in an axiomatization of physics by taking as axioms all those conse-
quences of our standard theory that don’t contain references to electrons.
Let us then reject this strategy, on the grounds that it does not yield a
sufficiently attractive first-order theory.

Since ‘attractiveness’ is not an easy notion to formalize, it seems that
the only workable strategy in investigating whether there is an attractive
first-order subtheory of N that is adequate to physics is to look at some
particular first-order subtheory of N that does seem attractive, and try to

 See for instance Benacerraf , Hart  (especially pp. –), and Jubien .
Also, for problems of quite a different sort, Lear , Putnam , and Benacerraf .

 This last piece of hyperbole was suggested to me by remarks in Boolos  andTharp
. Both these papers, along with Tarski , raise important issues about the decision of
what to count as logic.
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prove that it is sufficiently powerful. Of course, if it turns out that the par-
ticular subtheory one has investigated is not powerful enough, that won’t
prove that no attractive first-order subtheory of N is powerful enough:
one may have simply left out first-order axioms that should have been
included. But there seems to be no way around this difficulty, without
giving precise formal content to the notion of attractiveness; and doing
that seems obviously impossible.

There is, however, a rather natural first-order subtheory of N to inves-
tigate, and I would conjecture that this subtheory (which I will call N) is
sufficiently powerful, in the sense of being adequate for the development
of standard gravitational theory. I believe that by investigating this con-
jecture wewill be able either to substantiate it, or to find out enough about
why it fails so that we will able to supplement the theory (in an attractive
way) with additional first-order axioms so that the resulting theory will
be sufficiently powerful.

To see what the first-order subtheory N of N that I have in mind is
like, let us first not worry about the ‘fewer than’ quantifier and worry
only about how to eliminate the use of the second-order quantifier, i.e.
of what I’ve called the complete logic of Goodmanian sums. Intuitively,
these second-order quantifiers range over all regions that contain only
points in the domain of the first-order quantifiers; the problem in finding
an adequate first-order subtheory of N, then, is the problem of finding an
adequate first-order nominalistic axiomatization of the notion of region.

Looking at the matter platonistically, the set of all regions forms a
complete atomic near-Boolean algebra, where by a near-Boolean algebra
I mean something just like a Boolean algebra except not containing a zero
element. (Recall the earlier stipulation that there is to be no region that
contains no space-time points.) The atoms of the algebra, i.e. the regions
with no proper subregions, are of course just the space-time points: to say
that the algebra is atomic is to say that every region contains such atoms
(and this implies that every region is the sum of the atoms it contains).
Now, there is no difficulty in giving a complete first-order axiomatization
of the notion of an atomic near-Boolean algebra (using, say, the primitive
‘⊆’, meaning ‘is a subregion of ’). The problem is with the notion of com-
pleteness; i.e. with the idea that there are asmany regions as there possibly
could be, given that there are only the space-time points that there are.The
platonistic method of specifying completeness of the algebra is to say that
for every non-empty set of space-time points, there is a region containing
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(i.e. having as subregions) the points in that set andno others.Theobvious
nominalistic tack is to replace this claim by an axiom schema: to regard
as an axiom each sentence of form

() ∀u . . . , un{∃x[x is a point and �(x, u, . . . , un)] → ∃r∀x[x is a
point → (x ⊆ r ↔ �(x, u, . . . , un))]}.

Here I am using only one style of variable, ranging over regions gen-
erally; ‘x is a point’ is defined as ‘∀y(y ⊆ x → y = x)’. �(x, u, . . . , un)

can be any formula in the nominalistic language: in particular, it can
contain physical vocabulary like ‘spatio-temporally between’ or ‘congru-
ent in gravitational potential’; and it may include quantifiers that range
over regions. (This latter stipulation means that some of the instances
of our schema will make impredicative assertions of region-existence.
This seems legitimate: on the realist approach to space-time I’ve adopted,
regions are physical entities that objectively exist independently of our
picking them out. But if you don’t like impredicativity, you could weaken
the theory by disallowing such instances of ().)

Having axiomatized the notion of region in this first-order way, it
is clear how to get a subtheory of N with no second-order quanti-
fiers: simply take N and restrict all first-order quantifiers by the defined
predicate ‘point’, then replace all second-order quantifiers by unrestricted
first-order quantifiers, and append the axioms for regions., [So in
particular, the Dedekind continuity claims (for the geometric ordering of
space-time points, and for the ordering of space-time points with respect
to each scalar) are each made by a single axiom rather than by a schema:
a common notion of region is used in axiomatizing each of the Dedekind
continuity claims. This turns out to be important for insuring that the
different orderings interrelate in the desired way.] This theory (I’ll call it
N*) isn’t quite a first-order theory, because it still contains the cardinality
quantifier. So we now have to get rid of that.

 Here for simplicity I’m assuming that N has been written so that particles are not
explicitly quantified over in formulating it—or if you like, particles are identified with their
trajectories. (Cf. note .) Obviously this is not essential to the strategy in the text of how
second-order quantifiers are to be eliminated, it just makes that strategy a bit easier to
describe.

 This is still a subtheory of N despite its additional vocabulary ‘⊆’, because the new
vocabulary was definable in N using second-order quantification. The same will go for the
predicate ‘<’ to be introduced later.
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When I sketched how to formulate N in Chapter , I made use of the
‘fewer than’ quantifierF ; but as I remarked, this can be dropped in favor
of the finiteness quantifier ∃fin, if we add a predicate to the theory. It is
necessary to showhow this is done, before going on to perform the further
task of dropping ‘∃fin ’.

The predicate we need to add, in order to replaceF by ∃fin, is a binary
predicate ‘≤’ holding between regions: ‘r ≤ r’ is tomean intuitively that
r contains no fewer points than does r (with the convention on ‘fewer
than’ introduced before: all infinite regions are to be regarded as contain-
ing equally many points). Since the ‘fewer than’ quantifier was applied in
Chapter  only in the context of points rather than of arbitrary regions—
that is, it occurred only in contextA(x)FB(x) inwhich the formulasA(x)

and B(x) couldn’t be satisfied by anything other than points, in anymodel
of the theory—then it is clear that ‘F ’ can be dropped in favor of ‘≤’ as
long as we can axiomatize ‘≤’ in such a way that in any model, ‘x ≤ x’
will be satisfied by precisely the pairs 〈r, r〉 such that r contains no fewer
points than r. It is in order to meet this condition that the quantifier
∃fin must be introduced.

An axiom system that meets this condition is as follows. (The theory
of atomic near-Boolean algebras is presupposed as a background theory.
Although the only primitive I’ve introduced for that theory is ‘⊆’, I’ll
use the defined term ‘point’ introduced above and various other Boolean
notions like ‘∪’, since it is obvious how to paraphrase claims involving
them in terms of ‘⊆’.The only additional primitive to be used in the axiom
system is the cardinality relation ‘≤’; ‘<’ and ’≈’ are defined in terms of it,
i.e. ‘x < y’ is defined as ‘x ≤ y and not y ≤ x’ and ‘x ≈ y’ as ‘x ≤ y and y ≤ x’.
Also, ‘Inf(x)’, meaning intuitively that x has maximum size, is defined as
‘∀y(y ≤ x)’; Axiom , together with the others in –, ensures that this
amounts to x being infinite.) The system consists of Axioms – below:

 In fact, since inChapter we applied the cardinality quantifier only to points in equally
spaced regions, we could be satisfied with axioms that guaranteed that the claim in the text
held for any equally spaced regions r and r. This fact is of relevance in connection with
note .

 Note added to nd edition: A more pellucid axiomatization would have included the
axiom

. x ⊆ y → x ≤ y.

Then  (introduced in the next paragraph) would have been redundant given the mereo-
logical background even without Axiom , since Axiom  would guarantee that the region
V containing all space-time points satisfies the definition of Inf.
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. x ≤ y ∧ y ≤ z → x ≤ z
. x ≤ y ∨ y ≤ x
. ∃x∃y(x � y)
. Point(x) → ∀y(x ≤ y)
. Inf(x ∪ y) → Inf(x) ∨ Inf(y)
. ¬Inf (x) ∧ Point(y) ∧ y � x → x < x ∪ y ∧ ¬∃z(x < z < x ∪ y)
. ¬Inf (x) → ∃finy[Point(y) ∧ y ⊆ x].

What about eliminating ∃fin? Axioms – don’t contain it, and they
together with

A. ¬Inf (x)∧ w ∪ y ≈ x ∧ Point(y)∧ y � w → w < x ∧ ¬∃z(w <

z < x)

. ∃x Inf(x)

(which also don’t contain ‘∃fin ’ but only the defined predicate ‘Inf ’) are
enough to guarantee (in the context of the axioms for an atomic near-
Boolean algebra) that in any model of the theory, if Eq is the extension of
the formula ‘x ≤ x ∧ x ≤ x’ in the model then:

(a) Eq is an equivalence relation whose equivalence classes form a
linear ordering with first and last elements.

(b) Each equivalence class other than the last has an immediate
successor.

(c) The last equivalence class has predecessors but no immediate
predecessor; but it is the only equivalence class with this property.

(d) For each positive integern, thenth equivalence class in the ordering
contains precisely those regions that contain exactly n points.

So the last equivalence class in the ordering—the one that contains
precisely the regions satisfying the predicate ‘Inf ’—contains only infinite

Axiom  (and hence ) does follow from –. For if Inf(y) then x ≤ y by definition; so we
need only deal with the case where ¬Inf (y), and hence where, by , there are only finitely
many points in y that aren’t in its subset x. The proof is by induction on the number n of
such points. If n is , x is just y, and y ≤ y is guaranteed by . For the induction step, suppose
that whenever z is a subset of y with k fewer members than y, z ≤ y, and that x is a subset of
y with k +  fewer members. Letting p be one of those members, the induction hypothesis
gives that x ∪ p ≤ y, and part of  gives that x ≤ x ∪ p, so  gives x ≤ y as desired.

 Note added to this edition: The original edition erroneously omitted A. I have had to
do a bit of rewriting of the remainder of this section to correct this, but have stuck to the
original edition as closely as possible. A follows from – by an inductive argument similar
to that used for Axiom  in the previous note.
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regions, and there are no infinite regions in the first, second, third, etc.
equivalence classes. However, a compactness argument shows that there
aremodels of axioms – and A and  in which there are ‘non-standard’
equivalence classes, equivalence classes which occupy no finite position
but also are not last; regions in these equivalence classes will be infinite,
but will not satisfy the defined predicate ‘Inf ’.

If we are to rule out such non-standard models of ‘≤’, we must replace
axioms A and  by axiom  (which in conjunction with – entails
them). That this strengthening does rule out non-standard equivalence
classes is clear: it implies that the ordering of equivalence classes is a
well-ordering, and this together with (a)–(c) implies that the ordering has
order type ω +  (i.e. of the positive integers followed by one infinite ele-
ment). This last result plus (d) shows that in each model of the axioms of
atomic near-Boolean algebra plus axioms –, ‘≤’ is satisfied by precisely
the pairs 〈r, r〉 such that r has no fewer points than r.

We could also rule out the non-standard models by a second-order
induction axiom: either

′. ∀P[∃xPx ∧ ∀x∀y(Point(y) ∧ Px → P(x ∪ y)) → ∀x(Px ∨
Inf(x))],

or if we also include Axiom A, the somewhat simpler

′∗. ∀P[∃xPx → ∃x(Px ∧ ∀w(w < x → ¬Pw))].
These second-order axioms are not nominalistic: they involve second-
order quantifications that go beyond the complete logic of Goodmanian
sums, for the predicate-quantifier ranges over predicates of regions that
aren’t points. But they are of interest, because they have obvious first-order
weakenings ′′ and ′′∗: simply replace them by first-order induction
schemas. For instance, ′∗ is

 Note that no such equivalence classes could contain any equally spaced regions if
space-time was Archimedean. The Archimedeanness of space-time was a consequence of
the original axiomatization of its geometry, the axiomatization using the complete logic of
Goodmanian sums; this fact together with note  is sufficient to show that the cardinality
quantifiers aren’t needed when one has the complete logic of Goodmanian sums. But now
that we’ve dropped the use of the logic of Goodmanian sums, there will be non-standard
models of space-time in which it has non-Archimedean structure, so there is no guarantee
that the non-standard equivalence classes can’t contain equally spaced regions in some
models.
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′′∗. ∀u, . . . , un[∃x�(x, u, . . . , un)→∃x{�(x, u, . . . , un)∧∀w(w <

x → ¬�(w, u, . . . , un))}].
(′′ entails A and ′′∗ doesn’t; but given A, they are equivalent.) The
models of the theory consisting of axioms – plus ′′ (or – plus A
plus ′′∗) have no ‘discernible’ non-standard equivalence classes; and the
theory seems to be a very natural first-order weakening of axioms –.

If we combine – and ′′ with the rest of our theory N*, we obtain a
completely first-order subtheory N of N. In doing this, we are to let the
axiom schema ′′ take as instances any formula in the language of N—
that is, it can contain empirical vocabulary like ‘Temp-Bet’ as well as ‘≤’
and ‘⊆’. Also, we are to expand the instances of schema () to include
formulas containing ‘≤’.

III
N is a rather natural first-order subtheory of N to look at, in that it
results from something equivalent to N simply by replacing two second-
order statements (viz. axiom  and the second-order strengthening of
()) by schemas. This system, then, is related to the second-order theory
N in very much the way that first-order set theory is related to second-
order set theory: there too, we get the first-order weakening of the theory
simply by taking a second-order axiom (in this case the replacement
axiom) and making a first-order schema out of it. This analogy might
lead us to suspect that just as N has all the nominalistic consequences
that platonistic formulations of Newtonian gravitation theory have in the
context of second-order set theory, so too N will have all the nominalis-
tic consequences that platonistic formulations of Newtonian gravitation
theory have in the context of first-order set theory.

It would be nice if this guess were correct, but I don’t think that it can
be. For something analogous to first-order number theory appears to be
imbeddable in the system N (using the points in an arbitrary infinite
equally spaced regionwith one endpoint, instead of the natural numbers).
Consequently, N ought to have a Gödel sentence expressible but not
provable in it; and this Gödel sentence ought to be provable in the system
P of first-order platonistic gravitational theory. If this argument-sketch

 Essentially this observation was made to me by John Burgess and Yiannis
Moschovakis.
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is correct then there will be some very recherché consequences of P
that are expressible but not provable in N. Still, I suspect that the extra
strength that P has over N is confined to such recherché consequences;
N is I suspect sufficient for all nominalistic consequences we would
normally be interested in deducing from P, and more than sufficient for
developing the usual theory of gravitation. Compare Peano arithmetic,
the first-order theory that results from full second-order arithmetic by
replacing the second-order induction axiom by a first-order schema:
although second-order arithmetic has all the arithmetic consequences
that arithmetic in the context of second-order set theory has, Peano arith-
metic is weaker than arithmetic in the context of first-order set theory.
Still, Peano arithmetic is strong enough for any ordinary arithmetical con-
sequences. I would suspect that something analogous is true for N: that
it is more than strong enough for any ordinary developments in the usual
theory of gravitation. However, this is not a matter I have investigated
very far, and I will leave it to others more adept at these matters than I
to confirm or refute my suspicion. (As I’ve mentioned, if the suspicion
turns out to be false, I would look for a natural first-order strengthening
of N.)

A platonist might argue that even if I am right about the strength
of N, nominalism is still in trouble: for since N is weaker in nomi-
nalistic consequences than the first-order platonistic theory P, then it
doesn’t have all the nominalistic consequences that we ought to want.
That is, we ought to want all the nominalistic consequences of P, even
the very recherché ones that no one is interested in in practice, like the
Gödel sentence of N. There is a certain plausibility to this argument
for the inadequacy of N; but it doesn’t seem to me that it can be used
to support the platonistic theory P, it can only be used to support a
second-order theory like N. For P too (assuming that it is formulated
in a recursively axiomatized system like Zermelo-Frankel set theory, or at
least a recursively enumerably axiomatized system) has a Gödel sentence
which is intuitively true, and by adding that sentence to P we will get
recherché consequences not obtainable from P alone; these recherché
consequences seem just as intuitively desirable as the Gödel sentence of
N. And the same point holds not only for P but for any expansion of
P with a recursively enumerable set of axioms. The point is that a price
of restricting oneself to first-order logic (and to recursively or recursively
enumerably axiomatized theories; but there seems to be little point in a
restriction to first-order logic if one is going to allow the use of theories
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with no recursively enumerable axiomatization) is that one has to settle
for a rather arbitrarily restricted theory.That is, for any first-order theory
one settles for, there is a better one, one that seems intuitively to be true
if the original one is, and is more powerful. This holds whether the first-
order theory one settles for is a nominalistic one like N or a platonistic
one like P; hence it can’t be used as an argument for the inadequacy ofN
unless platonistic first-order theories are also admitted to be inadequate.
Consequently, if one is committed to first-order theories, then the only
obvious way to decide if one is good enough is to decide whether it is
powerful enough to get the results that are seriously needed in practice,
i.e. excluding recherché results like those obtained byGödelization. As I’ve
said, I think it highly likely that N or some slightly stronger first-order
subtheory of N passes this test.

The argument at the beginning of the previous paragraph, then, may
indicate an inadequacy in N; but if so, it is an inadequacy in P as well,
and hence it is not an argument for platonism. If you want to cure this
‘inadequacy’, the only recourse is to go to a second-order theory—either
N, or platonistic gravitational theory in the context of second-order set
theory. But since as we’ve seen N has all the nominalistic consequences
that second-order platonistic set theory has, it is hard to see in the context
of second-order logic what the advantages of platonism can be. Either
way, then, it looks as if nominalism triumphs.
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